题目:
题解:
二维线段树的姿势很明显了,每次更新一个二维矩形内的最高值,更新也用最高值更新
这道题就是区间查询+区间修改了
区间修改和单点修改有什么区别呢?区间修改需要二维线段树的标记永久化
标记永久化对于线段树上每个节点需要维护两个量,拿维护最大值来举例,你需要维护一个值have,代表这个子树里有这样一个最大值,另外一个值all代表这个子树里全都是这个值
那么赋值的时候我们需要把路径上的have全部更新并更新对应区间的all
查询的时候我们要用路径上所有的all和对应区间的have来更新答案
代码:
#include <cstdio>
#include <iostream>
using namespace std;
int S,D;
struct seg
{
int have[4005],all[4005];
void change(int now,int l,int r,int lrange,int rrange,int v)
{
have[now]=max(have[now],v);
if (lrange<=l && rrange>=r) {all[now]=max(all[now],v);return;}
int mid=(l+r)>>1;
if (lrange<=mid) change(now<<1,l,mid,lrange,rrange,v);
if (rrange>mid) change(now<<1|1,mid+1,r,lrange,rrange,v);
}
int qurry(int now,int l,int r,int lrange,int rrange)
{
if (lrange<=l && rrange>=r) return have[now];
int mid=(l+r)>>1,ans=all[now];
if (lrange<=mid) ans=max(ans,qurry(now<<1,l,mid,lrange,rrange));
if (rrange>mid) ans=max(ans,qurry(now<<1|1,mid+1,r,lrange,rrange));
return ans;
}
};
struct sts
{
seg have[4005],all[4005];
void Ch(int now,int l,int r,int lrange,int rrange,int L,int R,int v)
{
have[now].change(1,1,S,L,R,v);
if (lrange<=l && rrange>=r) {all[now].change(1,1,S,L,R,v); return;}
int mid=(l+r)>>1;
if (lrange<=mid) Ch(now<<1,l,mid,lrange,rrange,L,R,v);
if (rrange>mid) Ch(now<<1|1,mid+1,r,lrange,rrange,L,R,v);
}
int Qu(int now,int l,int r,int lrange,int rrange,int L,int R)
{
if (lrange<=l && rrange>=r) return have[now].qurry(1,1,S,L,R);
int mid=(l+r)>>1,ans=all[now].qurry(1,1,S,L,R);;
if (lrange<=mid) ans=max(ans,Qu(now<<1,l,mid,lrange,rrange,L,R));
if (rrange>mid) ans=max(ans,Qu(now<<1|1,mid+1,r,lrange,rrange,L,R));
return ans;
}
}t;
int main()
{
freopen("tet.in","r",stdin);
freopen("tet.out","w",stdout);
int n,d,s,w,x,y;
scanf("%d%d%d",&D,&S,&n);D++;S++;
for (int i=1;i<=n;i++)
{
scanf("%d%d%d%d%d",&d,&s,&w,&x,&y);
int lj=t.Qu(1,1,D,x+1,x+d,y+1,y+s);
t.Ch(1,1,D,x+1,x+d,y+1,y+s,lj+w);
}
printf("%d",t.Qu(1,1,D,1,D,1,S));
}