[BZOJ3784]树上的路径(点分治+STL)

该博客主要介绍了如何利用点分治和STL解决BZOJ3784题目中的树上路径问题。博主采用二分查找结合点分治的方法,通过预处理降低复杂度至nlog^2n,但在实现过程中遇到了TLE(超时)的问题,怀疑可能由于map和vector的常数时间过大导致。尽管如此,博主依然认为该题目的STL运用值得学习。
摘要由CSDN通过智能技术生成

题目:

我是超链接

题解:

我用的是二分+点分治的方法
二分m大的路径长度,得到下界以后显然是一个nlog^2n的经典点分治,加上二分的log,显然比较虚。但是点分治中有一个log是sort需要的,我们就可以先一次点分治把sort的结果用vector存下来,这样的话就能把总复杂度降为nlog^2,得到m大的路径最后一次点分治暴力统计路径。总复杂度是O(nlog^2n)的,但不知道是不是map和vector的问题,我常数贼大,然后就T了?!
下面是TLE代码,我觉得复杂度是对的,但是求正解的盆友不要看了。
但是这道题STL的用法很好,所以即使T了还是想着码一下

代码:

#include <map>
#include <cstdio>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
#define INF 1e9
using namespace std;
const int N=50005;
const int NN=300005;
int n,tot,nxt[N*2],point[N],v[N*2],c[N*2],size[N],f[N],root,num,k,m,sum,len[N],dis[N],mid,id,game[NN],ans,vis[N],ID;
vector
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值