[BZOJ3083]遥远的国度(树链剖分+dfs序)

因为今天是植树节,所以我们要剖树


题目:

我是超链接

题解:

可以发现除了这个换根操作之外别的全是裸树剖+dfs序维护子树
换根的情况怎么办呢?我们可以分类讨论一下,假如说这次要查询x的子树

  • root=x,那么查询的范围是整棵树
  • root不在x的子树里,那么对x的查询范围并没有什么影响,还是in~out
  • root在x的子树里,那么需要查询的部分是除了通往root这一支之外的最小值

有一个小细节要注意,判断以上的第三种情况时,不能用【除了子树里有root的v[i],别的都加上】,而是用【把这一支找出来然后求补集】,因为如果把其他的都加上,如果遇到fa[x]就很麻烦了,你加还是不加?加的话就白分类了,不加就少了一支,所以要用补集法

代码:

#include <cstdio>
#include <iostream>
#define INF 2147483647
using namespace std;
const int N=100005;
int tot,nxt[N*2],point[N],v[N*2],fa[N],h[N],in[N],out[N],top[N];
int n,delta[N*4],son[N],minn[N*4],root,size[N],totw,a[N],tree[N];
void addline(int x,int y)
{
    ++tot; nxt[tot]=point[x]; point[x]=tot; v[tot]=y;
    ++tot; nxt[tot]=point[y]; point[y]=tot; v[tot]=x;
}
void dfs_1(int x,int faa)
{
    fa[x]=faa;h[x]=h[faa]+1;size[x]=1;int maxx=0;
    for (int i=point[x];i;i=nxt[i])
      if (v[i]!=faa)
      {
        dfs_1(v[i],x);
        size[x]+=size[v[i]];
        if (maxx<size[v[i]]) maxx=size[v[i]],son[x]=v[i];
      }
}
void dfs_2(int x,int fa)
{
    if (son[fa]!=x) top[x]=x;
    else top[x]=top[fa];
    in[x]=++totw;
    if (son[x])
    {
        dfs_2(son[x],x);
        for (int i=point[x];i;i=nxt[i])
          if (v[i]!=fa && v[i]!=son[x]) dfs_2(v[i],x);
     } 
    out[x]=totw;
}
void updata(int now){minn[now]=min(minn[now<<1],minn[now<<1|1]);}
void pushdown(int now)
{
    if (delta[now])
    {
        delta[now<<1]=delta[now];
        delta[now<<1|1]=delta[now];
        minn[now<<1]=delta[now];
        minn[now<<1|1]=delta[now];
        delta[now]=0;
    }
}
void build(int now,int l,int r)
{
    if (l==r)
    {
        minn[now]=a[tree[l]];
        return;
    }
    int mid=(l+r)>>1;
    build(now<<1,l,mid);
    build(now<<1|1,mid+1,r);
    updata(now);
}
void change(int now,int l,int r,int lrange,int rrange,int vv)
{
    if (lrange<=l && rrange>=r) {delta[now]=vv; minn[now]=vv;return;}
    int mid=(l+r)>>1;
    pushdown(now);
    if (lrange<=mid) change(now<<1,l,mid,lrange,rrange,vv);
    if (rrange>mid) change(now<<1|1,mid+1,r,lrange,rrange,vv);
    updata(now);
}
int qurry(int now,int l,int r,int lrange,int rrange)
{
    if (lrange<=l && rrange>=r) return minn[now];
    int mid=(l+r)>>1,ans=INF;
    pushdown(now);
    if (lrange<=mid) ans=min(ans,qurry(now<<1,l,mid,lrange,rrange));
    if (rrange>mid) ans=min(ans,qurry(now<<1|1,mid+1,r,lrange,rrange));
    return ans;
}
void Chan(int u,int v,int vv)
{
    int f1=top[u],f2=top[v];
    while (f1!=f2)
    {
        if (h[f1]<h[f2]) swap(f1,f2),swap(u,v);
        change(1,1,n,in[f1],in[u],vv);
        u=fa[f1]; f1=top[u];
    }
    if (in[u]>in[v]) swap(u,v);
    change(1,1,n,in[u],in[v],vv);
}
int Qu(int x)
{
    if (root==x) return qurry(1,1,n,1,n);
    if (in[root]<in[x] || in[root]>out[x]) return qurry(1,1,n,in[x],out[x]); //root不在x的子树里 
    int Min=INF;
    for (int i=point[x];i;i=nxt[i])
      if (v[i]!=fa[x] && in[root]>=in[v[i]] && in[root]<=out[v[i]]) //root在v[i]的子树里 
      {
        if (in[v[i]]>1) Min=min(Min,qurry(1,1,n,1,in[v[i]]-1));//转换为补集一次求解 
        if (out[v[i]]<n) Min=min(Min,qurry(1,1,n,out[v[i]]+1,n));
      }
    return Min;
}
int main()
{
    int m;scanf("%d%d",&n,&m);
    for (int i=1;i<n;i++)
    {
        int x,y;scanf("%d%d",&x,&y);
        addline(x,y);
    }
    for (int i=1;i<=n;i++) scanf("%d",&a[i]);
    scanf("%d",&root);
    dfs_1(root,0); dfs_2(root,0);
    for (int i=1;i<=n;i++) tree[in[i]]=i;
    build(1,1,n);
    while (m--)
    {
        int opt,x,y,v;scanf("%d",&opt); 
        switch(opt)
        {
            case 1:scanf("%d",&root);break;
            case 2:scanf("%d%d%d",&x,&y,&v);Chan(x,y,v);break;
            case 3:scanf("%d",&x);printf("%d\n",Qu(x));break;
        }
    }
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值