题目:
题解:
显然一条边的负载等于将这条边断开后形成的两个子树的节点数的乘积。
在计算一条边的负载的时候,可以将所有与之连通的点看成一棵树。只需要计算出一个端点的size大小就可以用size*(n-size)计算出答案。
由于这棵树的形态是已经确定的,可以先将这棵树建出来。每一次添加一条边肯定是在一对父子之间。那么将这条边连通无非是将父亲以及它能到的最远的祖先之间的点的size都加上儿子的size。那么我们可以用一个并查集来维护某个点最远到它的哪一个祖先都是连通的,然后每次修改size的时候用树链剖分修改树链就可以了。
注意y节点不用再find了,因为在添加边的时候因为树已经处理好了,所以find(y)和y一定是一个值,但是在Q的时候必须查找y本身,因为此时find(y)为根节点。
代码:
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int N=100005;
struct hh{int x,y,id;}a[N];
int n,tot,yx,nxt[N*2],point[N],v[N*2],f[N],size[N],h[N],son[N],top[N],in[N],num,sum[N*4],delta[N*4],fa[N];
bool vis[N];
int find(int x)
{
if (f[x]!=x) f[x]=find(f[x]);
return f[x];
}
void addline(int x,int y)
{
++tot; nxt[tot]=point[x]; point[x]=tot; v[tot]=y;
++tot; nxt[tot]=point[y]; point[y]=tot; v[tot]=x;
}
void dfs_1(int x,int faa)
{
vis[x]=1; fa[x]=faa; size[x]=1; h[x]=h[faa]+1;int maxx=0;
for (int i=point[x];i;i=nxt[i])
if (v[i]!=faa)
{
dfs_1(v[i],x);
size[x]+=size[v[i]];
if (maxx<size[v[i]]) maxx=size[v[i]],son[x]=v[i];
}
}
void dfs_2(int x,int fa)
{
vis[x]=1;
if (son[fa]!=x) top[x]=x;
else top[x]=top[fa];
in[x]=++yx;
if (son[x])
{
dfs_2(son[x],x);
for (int i=point[x];i;i=nxt[i])
if (v[i]!=fa && v[i]!=son[x]) dfs_2(v[i],x);
}
}
void updata(int now){sum[now]=sum[now<<1]+sum[now<<1|1];}
void build(int now,int l,int r)
{
if (l==r)
{
sum[now]=1;
return;
}
int mid=(l+r)>>1;
build(now<<1,l,mid);
build(now<<1|1,mid+1,r);
updata(now);
}
void pushdown(int now)
{
if (delta[now])
{
delta[now<<1]+=delta[now];
delta[now<<1|1]+=delta[now];
sum[now<<1]+=delta[now];
sum[now<<1|1]+=delta[now];
delta[now]=0;
}
}
void change(int now,int l,int r,int lrange,int rrange,int vv)
{
if (lrange<=l && rrange>=r){sum[now]+=vv; delta[now]+=vv; return;}
int mid=(l+r)>>1;pushdown(now);
if (lrange<=mid) change(now<<1,l,mid,lrange,rrange,vv);
if (rrange>mid) change(now<<1|1,mid+1,r,lrange,rrange,vv);
updata(now);
}
int qurry(int now,int l,int r,int x)
{
if (l==r) return sum[now];
int mid=(l+r)>>1;pushdown(now);
if (x<=mid) return qurry(now<<1,l,mid,x);
else return qurry(now<<1|1,mid+1,r,x);
}
void Chan(int u,int v,int vv)
{
int f1=top[u],f2=top[v];
while (f1!=f2)
{
if (h[f1]<h[f2]) swap(f1,f2),swap(u,v);
change(1,1,n,in[f1],in[u],vv);
u=fa[f1]; f1=top[u];
}
if (in[u]>in[v]) swap(u,v);
change(1,1,n,in[u],in[v],vv);
}
int main()
{
int q;scanf("%d%d",&n,&q);
for (int i=1;i<=q;i++)
{
char st[5];scanf("%s",st);
scanf("%d%d",&a[i].x,&a[i].y);
if (st[0]=='A') addline(a[i].x,a[i].y),a[i].id=1;
}
for (int i=1;i<=n;i++)
if (!vis[i]) dfs_1(i,0);
memset(vis,0,sizeof(vis));
for (int i=1;i<=n;i++)
if (!vis[i]) dfs_2(i,0);
build(1,1,n);
for (int i=1;i<=n;i++) f[i]=i;
for (int i=1;i<=q;i++)
{
if (h[a[i].x]>h[a[i].y]) swap(a[i].x,a[i].y);
int x=find(a[i].x),y=a[i].y;
if (a[i].id==1)
{
int ans=qurry(1,1,n,in[y]);
Chan(a[i].x,x,ans);
f[y]=x;
}
else
{
int sz=qurry(1,1,n,in[x]);
int sy=qurry(1,1,n,in[y]);
printf("%d\n",sy*(sz-sy));
}
}
}