题目:
题解:
也就是求
∑ki=0Cin(%mod)
∑
i
=
0
k
C
n
i
(
%
m
o
d
)
n,k这么大,Lucas没跑了,我们先画柿子(模意义下
Smn
S
n
m
意为
∑mi=0Cin
∑
i
=
0
m
C
n
i
Lucas定理:
i=ip
我们预处理就好了
注意两个问题,一个是s[0][i]=1,另一个是要时时刻刻注意s的意义,当m>n的时候s并不是0= =
代码:
#include <cstdio>
#define LL long long
using namespace std;
const int p=2333;
int c[p+5][p+5],s[p+5][p+5];
LL Lucas(LL n,LL m)
{
if (!m) return 1;
if (n<m) return 0; LL ans=1;
for (;m;n/=p,m/=p) ans=ans*c[n%p][m%p]%p;
return ans;
}
LL askS(LL n,LL k)
{
if (n<p) return s[n][k];
LL ans=(s[n%p][p-1]*askS(n/p,k/p-1)%p+Lucas(n/p,k/p)*s[n%p][k%p]%p)%p;
return ans;
}
void init()
{
c[0][0]=1;
for (int i=0;i<p;i++) s[0][i]=1;
for (int i=1;i<p;i++)
{
c[i][0]=1,s[i][0]=1;
for (int j=1;j<p;j++)
{
c[i][j]=(c[i-1][j]+c[i-1][j-1])%p;
s[i][j]=(s[i][j-1]+c[i][j])%p;
}
}
}
int main()
{
init();
int T;scanf("%d",&T);
while (T--)
{
LL n,k;
scanf("%lld%lld",&n,&k);
printf("%lld\n",askS(n,k));
}
}