2023 OpenMMlab AI实战训练营 第二讲笔记 安装、三角板检测、训练

该文介绍了如何安装和使用MMDetection及MMPose进行目标检测和关键点识别,包括自上而下的预测流程、模型训练与预测、PythonAPI的使用。此外,提到了RTMDet在三角板检测中的应用,并探讨了在医学和高精度工业中提高检测精度的方法,如调整输入尺寸和优化NME曲线。同时,文章提出了去除无用关键点的思考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

视频一 安装MMDetection和MMPose

安装代码自豪已经实现,可自行在github download,格式为.ipynb

TOP down: 自上而下进行预测: 目标检测->关键点检测
1 目标检测模型 :MMDetection
2 关键点检测模型:MMPose
【A1,A2】:环境安装
【B1】预测训练模型:自豪详细介绍了代码,可以分析图片和视频
【B2】python API:导入工具包,构建目标检测模型(任选一个),构建关键点检测模型。
热力图是比较准确的:可以输出一个区域

视频二 MMDetection三角板目标检测

RTMPose:数据->模型->部署
可更换自己的数据集
可选目标检测算法:
Faster R cNN
RTMDet

视频三 MMDetection三角板关键点检测

十分 适合医学,高精工业应用
提高inputsize可以提供精度,但这样无疑会增加巨大计算量
nme曲线越低,表示训练效果越好
精简转换后即可部署
思考:如何取消无用的等间距分布点(多余点)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值