视频一 安装MMDetection和MMPose
安装代码自豪已经实现,可自行在github download,格式为.ipynb
TOP down: 自上而下进行预测: 目标检测->关键点检测
1 目标检测模型 :MMDetection
2 关键点检测模型:MMPose
【A1,A2】:环境安装
【B1】预测训练模型:自豪详细介绍了代码,可以分析图片和视频
【B2】python API:导入工具包,构建目标检测模型(任选一个),构建关键点检测模型。
热力图是比较准确的:可以输出一个区域
视频二 MMDetection三角板目标检测
RTMPose:数据->模型->部署
可更换自己的数据集
可选目标检测算法:
Faster R cNN
RTMDet
视频三 MMDetection三角板关键点检测
十分 适合医学,高精工业应用
提高inputsize可以提供精度,但这样无疑会增加巨大计算量
nme曲线越低,表示训练效果越好
精简转换后即可部署
思考:如何取消无用的等间距分布点(多余点)