免费的馅饼(二维偏序)(树状数组版)

该博客探讨了一种基于二维偏序的优化问题,具体是关于如何在接饼游戏中最大化得分。文章提到,由于每秒可以走1、2步或不走,可以转换为半秒走1步或不走的情况。通过动态规划(dp)数组来表示不同时刻的最大得分。关键在于,当两个饼下落时间差大于它们位置差的绝对值时,可以从一个状态转移至另一个状态。作者提出使用树状数组进行离散化处理,并以此为基础维护区间最大值,从而高效地处理更新和查询操作。
摘要由CSDN通过智能技术生成

https://vjudge.net/contest/261263#problem/B(题目链接)

因为一秒可以走1或2步或不走。

我们可以看成半秒走1步或不走。

dp[i]表示接到第i块饼时最大的分数值

现在有两块饼它们下落的时间为ti,tj,位置为pi,pj;

假设ti > tj;

只有ti - tj >= |pi - pj| 时dp[j]可以转移到dp[i];

当pi > pj 时 ti -tj > pi - pj    

ti  - pi > tj - pj;

 当pi < pj 时 ti -tj > pj - pi    

ti  + pi > tj + pj;

当pi > pj , ti -tj > pi - pj时 pj - pi < 0 , ti - tj > pj - pi;

 当pi < pj , ti -tj > pj - pi时 pi - pj<0, ti -tj > pi - pj ;

所以dp[j]可以转移到dp[i]的条件是

ti  + pi > tj + pj;并且ti  - pi > tj - pj;

这是个二维偏序问题

我们把v1 看成 ti  + pi, 把v2看成ti  - pi

把v1看成第一维从小到大排序,v2 看成第二维用数据结构维护

先把v2离散化

在把所有饼按v1从小到大排序,再在以离散化后的v2为下标,dp为值的一棵值域线段树(我写的树状数组)上找能更新到这个点的最大的dp值。

树状数组维

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值