在前面已经介绍过了线性表的查找方法:
这篇文章就介绍一下关于树表的查找方法,我们知道,当表插入、删除操作频繁时,为维护表的有序性,需要移动表中很多记录。所以改用动态查找表——几种特殊的树,我们主要介绍二叉排序树与平衡二叉树。
二叉排序树(Binary Sort Tree)又称为二叉搜索树、二叉查找树。二叉排序树或是空树,或是满足如下性质的二叉树:
若其左子树非空,则左子树上所有结点的值均小于根结点的值;
若其右子树非空,则右子树上所有结点的值均大于等于根结点的值;
其左右子树本身又各是一棵二叉排序树。
二叉排序树的操作——查找
若查找的关键字等于根结点,成功
否则
若小于根结点,查其左子树
若大于根结点,查其右子树
在左右子树上的操作类似
二叉排序树的存储结构
如何编写二叉排序树的查找算法?
我们需要知道:
(1)若二叉排序树为空,则查找失败,返回空指针。
(2)若二叉排序树非空,将给定值key与根结点的关键字T->data.key进行比较:
若key等于T->data.key,则查找成功,返回根结点地址;
若key小于T->data.key,则进一步查找左子树;
若key大于T->data.key,则进一步查找右子树。
因此我们可以写查找算法的递归过程
BSTree SearchBST(BSTree T,KeyType key)
{
if((!T) || key==T->data.key) return T;
else if (key<T->data.key) return SearchBST(T->lchild,key); //在左子树中继续查找
else return SearchBST(T->rchild,key); //在右子树中继续查找
} // SearchBST
查找算法的性能分析:
平均查找长度和二叉树的形态有关,即
最好:log2n(形态匀称,与二分查找的判定树相似)
最坏: (n+1)/2(单支树)
二叉排序树的操作——插入
例如:
若二叉排序树为空,则插入结点应为根结点
否则,继续在其左、右子树上查找
树中已有,不再插入
树中没有,查找直至某个叶子结点的左子树或右子树为空为止,则插入结点应为该叶子结点的左孩子或右孩子
插入的元素一定在叶结点上。
二叉排序树的操作——生成
从空树出发,经过一系列的查找、插入操作之后,可生成一棵二叉排序树 。
如 {10, 18, 3, 8, 12, 2, 7}
一个无序序列可通过构造二叉排序树而变成一个有序序列。构造树的过程就是对无序序列进行排序的过程。插入的结点均为叶子结点,故无需移动其他结点。相当于在有序序列上插入记录而无需移动其他记录。
下面是一个不同插入次序的序列生成不同形态的二叉排序树的例子:
二叉排序树的操作——删除
删除叶结点,只需将其双亲结点指向它的指针清零,再释放它即可。
被删结点缺右子树,可以拿它的左子女结点顶替它的位置,再释放它。
被删结点缺左子树,可以拿它的右子女结点顶替它的位置,再释放它。
被删结点左、右子树都存在,可以在它的右子树中寻找中序下的第一个结点(关键字最小),用它的值填补到被删结点中,再来处理这个结点的删除问题(或在它的左子树中寻找中序下的前驱结点(关键字最大))。
下面是一些其他例子:
下面是一段完整的二叉排序树生成,查找,插入,删除的代码:
#include <stdio.h>
#include <stdlib.h>
// 定义二叉树节点结构体
typedef struct Node {
int data; // 节点存储的数据
struct Node *left; // 左子节点指针
struct Node *right; // 右子节点指针
} Node;
// 创建一个新的节点
Node* createNode(int data) {
Node *newNode = (Node *)malloc(sizeof(Node));
newNode->data = data;
newNode->left = NULL;
newNode->right = NULL;
return newNode;
}
// 向二叉搜索树中插入一个节点
Node* insert(Node *root, int data) {
if (root == NULL) {
return createNode(data);
}
if (data < root->data) {
root->left = insert(root->left, data);
} else if (data > root->data) {
root->right = insert(root->right, data);
}
return root;
}
// 在二叉搜索树中查找一个节点
Node* search(Node *root, int data) {
if (root == NULL || root->data == data) {
return root;
}
if (data < root->data) {
return search(root->left, data);
} else {
return search(root->right, data);
}
}
// 找到以给定节点为根的子树中的最小值节点
Node* findMinValueNode(Node *node) {
Node *current = node;
while (current && current->left != NULL) {
current = current->left;
}
return current;
}
// 从二叉搜索树中删除一个节点
Node* deleteNode(Node *root, int data) {
if (root == NULL) {
return root;
}
if (data < root->data) {
root->left = deleteNode(root->left, data);
} else if (data > root->data) {
root->right = deleteNode(root->right, data);
} else {
if (root->left == NULL) {
Node *temp = root->right;
free(root);
return temp;
} else if (root->right == NULL) {
Node *temp = root->left;
free(root);
return temp;
}
Node *temp = findMinValueNode(root->right);
root->data = temp->data;
root->right = deleteNode(root->right, temp->data);
}
return root;
}
// 中序遍历二叉树并打印节点数据
void inorderTraversal(Node *root) {
if (root != NULL) {
inorderTraversal(root->left);
printf("%d ", root->data);
inorderTraversal(root->right);
}
}
int main() {
Node *root = NULL;
root = insert(root, 50);
insert(root, 30);
insert(root, 20);
insert(root, 40);
insert(root, 70);
insert(root, 60);
insert(root, 80);
printf("Inorder traversal of the given tree: ");
inorderTraversal(root);
printf("\n");
printf("Searching for 40: ");
Node *result = search(root, 40);
if (result != NULL) {
printf("Found!");
} else {
printf("Not found!");
}
printf("Deleting 20: ");
root = deleteNode(root, 20);
printf("Inorder traversal after deletion: ");
inorderTraversal(root);
printf("\n");
return 0;
}