灰狼算法优化长短期记忆网络的多变量回归预测:GWO-LSTM在Matlab中的应用与性能分析

本文介绍了一种结合灰狼算法与LSTM的GWO-LSTM方法,用于多变量回归预测。通过优化学习率、隐藏层节点数和正则化参数,提升了预测精度和稳定性。Matlab2018环境下的实验结果显示了GWO-LSTM方法的有效性。
摘要由CSDN通过智能技术生成

GWO-LSTM多变量回归预测,灰狼算法优化长短期记忆网络的回归预测(Matlab)
1.data为数据集。
2.MainGWO_LSTMNN.m为程序主文件,其他为函数文件无需运行。
3.命令窗口输出R2、MAE和MBE。
4.灰狼算法优化参数为学习率,隐藏层节点个数,正则化参数。
注意程序和数据放在一个文件夹,运行环境为Matlab2018及以上.

ID:6129693871622024

机器学习算法设计师


标题:基于GWO-LSTM的多变量回归预测方法研究及优化

摘要:本文针对多变量回归预测问题,利用GWO-LSTM算法对长短期记忆网络(LSTM)进行优化,实现了更准确、可靠的预测结果。首先介绍了数据集和程序主文件的相关信息,然后详细讨论了GWO-LSTM方法的原理和实现步骤,最后给出了运行环境和文件组织的注意事项。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值