Silver Lilypad Pond 白银莲花池
- Description
为了让奶牛们娱乐和锻炼,约翰建造了一个美丽的池塘。这个池塘是矩形的,可以分成 M×N个方格。一些格子是坚固得令人惊讶的莲花,还有一些是岩石,其余的只是美丽、纯净、湛蓝的水。
贝西正在练习芭蕾舞,她站在一朵莲花上,想跳到另一朵莲花上去,她只能从一朵莲花跳到另一朵莲花上,既不能跳到水里,也不能跳到岩石上。
贝西的舞步很像象棋中的马步:每次跳跃可以横移2格,纵移1格,或纵移1格,横移2格,最多有八个方向可供移动选择。
约翰一直在观察贝西的芭蕾练习,发现她有时不能跳到终点,因为中间缺了一些必要的莲花。约翰可以多种一些莲花来帮助贝西到达终点。不过要注意有石头的格子是不能种莲花的。
请帮助约翰求出至少要添加几朵莲花才能让贝西跳到终点,记这个数字为L,再求出添加L朵莲花后贝西跳到终点的最少步数,记这个数字为J。最后求出添加L朵莲花后跳到终点 的步数为J的路线有多少条,记这个数字为W。
- Input Format
第一行:两个用空格分开的整数:M和N,1≤M,N≤30
第二行到M+1行:第i +1行有N个用空格分开的整数,描述了池塘第i行的状态:0为 水,1为莲花,2为岩石,3为起点,4为终点。
- Output Format
第一行:一个整数:L,即需要添加的最少莲花数目,如果无解输出-1
第二行:一个整数:J,如果第一行是-1,不需要输出这行
第三行:一个整数:W,如果第一行是-1,不需要输出这行
- Sample Input
4 8
0 0 0 1 0 0 0 0
0 0 0 0 0 2 0 1
0 0 0 0 0 4 0 0
3 0 0 0 0 0 1 0
- Sample Output
2
6
2
- 分析
首先想到的肯定是深搜的做法。(可能只是我这个辣鸡才会第一眼想到的)然而无奈的是会TLE,经本人测试越70%左右。
下面讲讲广搜的做法,(根本就是个Spfa)。
对于一个点(x,y),记录到达它的L、J、W。然后类似于Spfa的松弛操作,向外找点,然后如果这个点的L、J刚好等于从(x,y)出发所得到的L、J,那就把这个点的W加上(x,y)的W,否则就更新这个点的L、J、W。每次更新后如果不在队列中就把它入队去更新别的点。其实就是Spfa的思想。(详见代码)
Ps:对了还有一个比较坑的地方,最后的W可能会超出int范围。
- 70%
#include <queue>
#include <stack>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int movex[8]={2,2,1,1,-1,-1,-2,-2},movey[8]={-1,1,-2,2,-2,2,-1,1};
int L=1<<30,J=1<<30,W,n,m,sx,sy,ex,ey,A[31][31],P[31][31];
void Dfs(int x,int y,int cnt,int tmp){
if (cnt>L) return;
if (cnt==L && tmp>J) return;
if (x==ex && y==ey){
if (cnt==L){
if (tmp==J) W++;
else if (tmp<J) J=tmp,W=1;
}
else if (cnt<L) L=cnt,J=tmp,W=1;
return;
}
for (int i=0;i<8;i++){
int xx=x+movex[i],yy=y+movey[i];
if (xx>=1 && xx<=n && yy>=1 && yy<=m && A[xx][yy]!=2 && P[xx][yy]==0){
if (A[xx][yy]==1){
P[xx][yy]=1;
Dfs(xx,yy,cnt,tmp+1);
P[xx][yy]=0;
}
if (A[xx][yy]==0){
P[xx][yy]=1;
Dfs(xx,yy,cnt+1,tmp+1);
P[xx][yy]=0;
}
}
}
}
int main(){
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++){
for (int j=1;j<=m;j++){
scanf("%d",&A[i][j]);
if (A[i][j]==3) sx=i,sy=j,A[i][j]=1;
if (A[i][j]==4) ex=i,ey=j,A[i][j]=1;
}
}
P[sx][sy]=1;
Dfs(sx,sy,0,0);
if (L==1<<30) printf("-1");
else printf("%d\n%d\n%d",L,J,W);
fclose(stdin); fclose(stdout);
return 0;
}
- 100%
#include <queue>
#include <stack>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
struct Data{int x,y;};
queue <Data> Q;
struct Info{int L,J;long long W;}Dist[31][31];
const int movex[8]={2,2,1,1,-1,-1,-2,-2},movey[8]={-1,1,-2,2,-2,2,-1,1};
int L=1<<30,J=1<<30,W,n,m,sx,sy,ex,ey,A[31][31],In[31][31];
int main(){
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
scanf("%d%d",&n,&m);
memset(Dist,127/2,sizeof(Dist));
for (int i=1;i<=n;i++){
for (int j=1;j<=m;j++){
scanf("%d",&A[i][j]);
if (A[i][j]==3) sx=i,sy=j,A[i][j]=1;
if (A[i][j]==4) ex=i,ey=j,A[i][j]=1;
}
}
Q.push((Data){sx,sy}); Dist[sx][sy]=(Info){0,0,1}; In[sx][sy]=1;
for (;!Q.empty();){
Data u=Q.front(); Q.pop(); In[u.x][u.y]=0;
for (int i=0;i<8;i++){
int xx=u.x+movex[i],yy=u.y+movey[i];
if (xx>=1 && xx<=n && yy>=1 && yy<=m && A[xx][yy]!=2){
if (Dist[xx][yy].L==Dist[u.x][u.y].L+1-A[xx][yy] && Dist[xx][yy].J==Dist[u.x][u.y].J+1){
Dist[xx][yy].W+=Dist[u.x][u.y].W;
if (!In[xx][yy]) In[xx][yy]=1,Q.push((Data){xx,yy});
}
if (Dist[xx][yy].L>Dist[u.x][u.y].L+1-A[xx][yy] || (Dist[xx][yy].L+1-A[xx][yy]==Dist[u.x][u.y].L && Dist[xx][yy].J>Dist[u.x][u.y].J+1)){
Dist[xx][yy].L=Dist[u.x][u.y].L+1-A[xx][yy];
Dist[xx][yy].J=Dist[u.x][u.y].J+1;
Dist[xx][yy].W=Dist[u.x][u.y].W;
if (!In[xx][yy]) In[xx][yy]=1,Q.push((Data){xx,yy});
}
}
}
}
if (Dist[ex][ey].L>1e9) printf("-1");
else printf("%d\n%d\n%lld",Dist[ex][ey].L,Dist[ex][ey].J,Dist[ex][ey].W);
fclose(stdin); fclose(stdout);
return 0;
}