最小与最大
- Description
做过了乘积最大这道题,相信这道题也难不倒你。
已知一个数串,可以在适当的位置加入乘号(设加了k个,当然也可不加,即分成k+1个部分),设这k+1个部分的乘积(如果k=0,则乘积即为原数串的值)对m 的余数(即mod m)为x;
现求x能达到的最小值及该情况下k的最小值,以及x能达到的最大值及该情况下的k的最小值(可以存在x的最小值与最大值相同的情况)。
- Input Format
第一行为数串,长度为n 满足2<=n<=1000,且数串中不存在0;
第二行为m,满足2<=m<=50。
- Output Format
四个数,分别为x的最小值 和 该情况下的k,以及x的最大值和 该情况下的k,中间用空格隔开。
- Sample Input
4421
22
- Sample Output
0 1 21 0
- 分析
一开始想的是用F[i][j][k]记录到第i个数字,放了j个乘号,得到k是否可行。
后来仔细一想,可以把其中一维当成F记录的信息,即F[i][k]记录到第i个数字得到k用了多少乘号。我们枚举j假设从j+1到i为一个数(A[i][j]表示i到j这段数是多少),然后转移方程为F[i][(k*A[j+1][i])%m]=min(F[i][(k*A[j+1][i])%m],F[j][k]+1)。初始化F[i][A[0][i]]=0,其他为无穷大。
#include <queue>
#include <stack>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int m,A[1003][1003],F[1003][51];
char s[1003];
int main(){
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
scanf("%s",s); scanf("%d",&m);
int n=strlen(s);
for (int i=0;i<n;i++)
for (int j=i;j<n;j++) A[i][j]=(A[i][j-1]*10+s[j]-'0')%m;
memset(F,127/2,sizeof(F));
for (int i=0;i<n;i++) F[i][A[0][i]]=0;
for (int i=0;i<n;i++){
for (int j=0;j<i;j++){
for (int k=0;k<m;k++){
F[i][(k*A[j+1][i])%m]=min(F[i][(k*A[j+1][i])%m],F[j][k]+1);
}
}
}
for (int i=0;i<m;i++)
if (F[n-1][i]<1005){
printf("%d %d ",i,F[n-1][i]);
break;
}
for (int i=m-1;i>=0;i--)
if (F[n-1][i]<1005){
printf("%d %d",i,F[n-1][i]);
break;
}
fclose(stdin); fclose(stdout);
return 0;
}