24. 两两交换链表中的节点
思路
- 重点:一定要画图,涉及需要定义几个指针和操作的先后顺序
本题的要使用虚拟头节点,保证所有节点的操作相同
代码实现
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public ListNode swapPairs(ListNode head) {
ListNode dummyHead = new ListNode();
dummyHead.next = head;
ListNode cur = dummyHead.next; // 两两一组中的第一个
ListNode pre = dummyHead; // 两两一组的前一个
ListNode tmp;
while (cur != null && cur.next != null) {
tmp = cur.next.next;
// 改变三个节点的next 一定一定注意前后顺序
cur.next.next = cur; // 步骤一
pre.next = cur.next; // 步骤二
cur.next = tmp; // 步骤三
pre = cur; // 因为顺序两两交换, cur成为这一组中最右边的节点
cur = tmp; // 成为下一组的第一个
}
return dummyHead.next;
}
}
19.删除链表的倒数第N个节点
思路
双指针的经典应用,如果要让倒数第n个节点,让 fast 先移动n+1步,然后再让fast和slow同时移动,直到fast指向链表的末尾,删掉slow后面的指针即可。
分为如下几步:
-
使用虚拟头节点,保证所有节点的操作方式相同。
-
定义 fast 和 slow 指针,初始值为虚拟头节点,如图:
-
fast 先走 n+1 步,为什么是 n+1 呢,因为可以确保同时移动到最后 slow 指向删除节点的前一个节点(删除操作的特点),如图:
-
fast 和 slow 同时移动,直到 fast 指向末尾,如图:
-
删除 slow 指向的下一个节点,如图:
代码实现
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public ListNode removeNthFromEnd(ListNode head, int n) { // n 代表两个节点的距离
ListNode dummyHead = new ListNode();
dummyHead.next = head;
ListNode cur = dummyHead;
ListNode pre = dummyHead; // 被删除节点的前一个节点
for (int i = 0;i < n + 1;i++) { // 使两个指针距离为 n+1
cur = cur.next;
}
while (cur != null) { // 利用双指针找到被删除节点的前一位
cur = cur.next;
pre = pre.next;
}
pre.next = pre.next.next; // 删除第N个节点
return dummyHead.next;
}
}
面试题 02.07. 链表相交
思路
简单来说,就是求两个链表相交节点的指针。这里不是数值相同,而是指针相等
为了方便举例,假设节点元素数值相等,则节点指针相等,步骤如下:
-
看如下两个链表,目前curA指向链表A的头节点,curB指向链表B的头节点:
-
我们再求出两个链表的长度,并求出两个链表长度的差值,然后让 curA 移动到,和 curB 末尾对齐的位置,如图:
-
此时我们可以比较 curA 和 curB 是否相同,如果不相同,同时向后移动,如果遇到 curA == curB ,则找到交点并return
代码实现
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) {
* val = x;
* next = null;
* }
* }
*/
public class Solution {
public ListNode getIntersectionNode(ListNode headA, ListNode headB) { // 如果相交,那么两个链的最后部分肯定相同
int sizeA = 0;
int sizeB = 0;
ListNode curA = headA;
ListNode curB = headB;
while (curA != null) { // 求链表A的长度
curA = curA.next;
sizeA++;
}
while (curB != null) { // 求链表B的长度
curB = curB.next;
sizeB++;
}
curA = headA; // 将curA重置到headA
curB = headB; // 将curB重置到headB
// 将两个链表的末尾对齐,使curA和curB处于同一位置
if (sizeA > sizeB) {
for (int i = 0;i < sizeA - sizeB;i++) {
curA = curA.next;
}
} else {
for (int i = 0;i < sizeB - sizeA;i++) {
curB = curB.next;
}
}
// A链B链同时遍历寻找指针指向地址相同的节点
for (int i = 0;i < Math.min(sizeA, sizeB);i++) {
if (curA == curB) { // 地址相同
return curA;
}
curA = curA.next;
curB = curB.next;
}
return null;
}
}
142.环形链表Ⅱ
思路
这道题不仅考虑是否有环,还涉及一些数学运算。
主要考察两个知识点:
- 判断链表是否有环
- 如果有环,如何找到这个环的入口
判断链表是否有环
可以使用快慢指针法,分别定义 fast 和 slow 指针,从头节点出发,fast 每次移动两个节点,slow 每次移动一个节点,如果 fast 和 slow 在循环中相遇,说明这个链表有环。
因为 slow 进入环入口的那一刻,fast 相遇 slow 就变成了相对位移为 1 的追及问题,所以一定可以相遇。
如果有环,如何找到这个环的入口
此时已经可以判断链表是否有环了,那么接下来要找这个环的入口
假设从头节点到环形入口节点的节点数为 x,环形入口节点 到 fast指针与 slow指针相遇节点的节点数为 y,从相遇节点 再到环形入口节点的节点数为 z 。如图所示:
那么相遇时:slow指针走过的节点数为 x + y
,fast指针走过的节点数为 x + y + n(y + z)
,n 为fast指针在环内走了 n 圈才遇到 slow指针,并且 n >= 1
。
这里 fast 转的圈数一定 >=1,slow 一圈也没转。(可以仔细思考一下,当成追及问题就很容易明白)
因为 fast 的速度为 2,slow 速度为 1,所以fast指针走过的节点数 = slow指针走过的节点数 * 2
(x + y) * 2 = x + y + n(y + z)
因为要找到环的入口,所以我们需要找到 x
将 x 单独放到左边:x = (n - 1)(y + z) + z
这个公式意味着:
从头节点出发一个指针,从相遇节点也出发一个指针,这两个指针速度都为 1,那么当这两个指针第一次相遇的时候就是环形入口的节点。
动画如下:
那么当 n > 1 是什么情况呢,就是index2指针在环形圈内转了n圈之后才遇到slow指针。
代码实现
/**
* Definition for singly-linked list.
* class ListNode {
* int val;
* ListNode next;
* ListNode(int x) {
* val = x;
* next = null;
* }
* }
*/
public class Solution {
public ListNode detectCycle(ListNode head) {
ListNode fast = head;
ListNode slow = head;
while (fast != null && fast.next != null) {
fast = fast.next.next; // 前进两个节点,确保 slow 进入环后 fast 与 slow 的相对位移为 1
slow = slow.next; // 前进一个节点
if (fast == slow) { // 利用双指针判断有环,下面开始寻找环开始的位置,利用 x = z
ListNode index1 = fast; // index1 从相遇点开始
ListNode index2 = head; // index2 从头节点开始
while (index1 != index2) { // index1和index2相遇的节点就是环开始的节点
index1 = index1.next;
index2 = index2.next;
}
return index1;
}
}
return null; // 没有环
}
}