Leetcode刷题94. 二叉树的中序遍历

这篇博客介绍了如何使用迭代和递归两种方法实现二叉树的中序遍历,时间复杂度均为O(N),空间复杂度为O(N)。通过示例代码详细解释了两种方法的逻辑和步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个二叉树的根节点 root ,返回它的 中序 遍历。

示例 1:

输入:root = [1,null,2,3]
输出:[1,3,2]

示例 2:

输入:root = []
输出:[]

示例 3:

输入:root = [1]
输出:[1]

示例 4:

输入:root = [1,2]
输出:[2,1]

示例 5:

输入:root = [1,null,2]
输出:[1,2]

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/binary-tree-inorder-traversal
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

class Solution {
        public List<Integer> inorderTraversal(TreeNode root) {
//            return inorderTraversalI(root);
            return inorderTraversalII(root);
        }

        //方法二:迭代
        //时间复杂度O(N),空间复杂度O(N)
        private List<Integer> inorderTraversalII(TreeNode root) {
            List<Integer> list = new ArrayList<>();
            if (root == null) {
                return list;
            }
            Stack<TreeNode> stack = new Stack<>();
            //中序遍历为左根右,先不断的遍历左子树并入栈
            while (!stack.isEmpty() || root != null) {
                while (root != null) {
                    stack.push(root);
                    root = root.left;
                }
                //当遍历到叶子节点时,出栈,并添加到list中
                root = stack.pop();
                list.add(root.val);
                //回到右子树继续遍历左节点
                root = root.right;
            }
            return list;
        }

        //方法一:递归
        //时间复杂度O(N),空间复杂度O(N)
        private List<Integer> inorderTraversalI(TreeNode root) {
            List<Integer> list = new ArrayList<>();
            helper(root, list);
            return list;
        }

        private void helper(TreeNode root, List<Integer> list) {
            if (root == null) {
                return;
            }
            helper(root.left, list);
            list.add(root.val);
            helper(root.right, list);
        }
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值