给定一个不含重复元素的整数数组 nums 。一个以此数组直接递归构建的 最大二叉树 定义如下:
二叉树的根是数组 nums 中的最大元素。
左子树是通过数组中 最大值左边部分 递归构造出的最大二叉树。
右子树是通过数组中 最大值右边部分 递归构造出的最大二叉树。
返回有给定数组 nums 构建的 最大二叉树 。
示例 1:
输入:nums = [3,2,1,6,0,5]
输出:[6,3,5,null,2,0,null,null,1]
解释:递归调用如下所示:
- [3,2,1,6,0,5] 中的最大值是 6 ,左边部分是 [3,2,1] ,右边部分是 [0,5] 。
- [3,2,1] 中的最大值是 3 ,左边部分是 [] ,右边部分是 [2,1] 。
- 空数组,无子节点。
- [2,1] 中的最大值是 2 ,左边部分是 [] ,右边部分是 [1] 。
- 空数组,无子节点。
- 只有一个元素,所以子节点是一个值为 1 的节点。
- [0,5] 中的最大值是 5 ,左边部分是 [0] ,右边部分是 [] 。
- 只有一个元素,所以子节点是一个值为 0 的节点。
- 空数组,无子节点。
示例 2:
输入:nums = [3,2,1]
输出:[3,null,2,null,1]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-binary-tree
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class Solution {
public TreeNode constructMaximumBinaryTree(int[] nums) {
if (nums == null || nums.length == 0) {
return null;
}
// return helper(nums, 0, nums.length);
return constructMaximumBinaryTreeII(nums);
}
//方法二:单调栈问题
//定义一个栈,每次新节点入栈后,保持栈内元素有序
//时间复杂度O(N),空间复杂度O(N)
private TreeNode constructMaximumBinaryTreeII(int[] nums) {
Deque<TreeNode> stack = new ArrayDeque<>();
for (int num : nums) {
TreeNode cur = new TreeNode(num);
//当前元素大于栈顶元素时,当前元素作为根节点,栈顶元素作为当前元素的左子树
while (!stack.isEmpty() && stack.peek().val < num) {
cur.left = stack.pop();
}
//当前元素小于栈顶元素,栈顶元素作为根节点,当前元素作为根节点的右子树
if (!stack.isEmpty()) {
stack.peek().right = cur;
}
//如果栈为空,当前元素就是最大值,作为根节点
stack.push(cur);
}
return stack.peekLast();
}
//方法一:递归
//先找到数据中的最大值,构造出根节点
//然后递归调用分别构造出左右子树
//时间复杂度O(N^2),空间复杂度O(N)
private TreeNode helper(int[] nums, int low, int high) {
if (low >= high) {
return null;
}
//获取最大值构造根节点
int maxIdx = getMaxIdx(nums, low, high);
TreeNode root = new TreeNode(nums[maxIdx]);
//递归调用分别构造左右子树
root.left = helper(nums, low, maxIdx);
root.right = helper(nums, maxIdx + 1, high);
return root;
}
private int getMaxIdx(int[] nums, int low, int high) {
int max = Integer.MIN_VALUE;
int idx = -1;
for (int i = low; i < high; i++) {
if (nums[i] > max) {
max = nums[i];
idx = i;
}
}
return idx;
}
}