给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target,返回 [-1, -1]。
你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。
示例 1:
输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]
示例 2:
输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]
示例 3:
输入:nums = [], target = 0
输出:[-1,-1]
提示:
0 <= nums.length <= 105
-109 <= nums[i] <= 109
nums 是一个非递减数组
-109 <= target <= 109
// 普通方法求解(时间复杂度O(n))
var searchRange = function(nums, target) {
var start = 0,count = 0
for(var i = 0;i <nums.length;i++){
if(nums[i]==target){
if(count==0){
start = i
}
count++
}else if(count>0){
break
}
}
return (count>0? [start,start+count-1]:[-1,-1])
};
// 二分法(时间复杂度O(logn))
var searchRange = function(nums, target) {
var res = [-1,-1]
var left = 0
var right = nums.length-1
// if(target>nums[right]||nums<nums[left]){
// return res
// }
// 查找第一个,
while(left<right){
// 使mid更靠近左边界
var mid = Math.floor(left+(right-left)/2)
if(target<=nums[mid]){
right = mid
}else{
left = mid+1
}
}
if(nums[left]==target){
res[0] = left
}else{
return res
}
var l = left
var r = nums.length-1
// 查找第二个
while(l<r){
// 使mid更靠近右边界
var mid = Math.ceil(l + (r - l ) / 2)
if(target>=nums[mid]){
l = mid
}else{
r = mid-1
}
}
if(nums[r]==target){
res[1] = r
}else{
return [-1,-1]
}
return res
};