F - Shifting String(置换的阶+思维)

该程序实现了一个计算置换阶数的算法,通过寻找轮换子序列并计算它们的阶,利用最小公倍数(lcm)找到整个置换的阶。输入是一个置换表示的字符串和相应的变换序列,输出是置换的阶。算法中采用了求解最小公倍数和遍历轮换子序列的方法来找出答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前置知识

轮换求置换的阶

例如 由1 2 3 4 5 变为 1 3 2 5 4可以写出其两个转换 (1 3 2)(4 5 ),在同一个转换中的数字经过循环可以回到他们对应的原位置。置换的阶即为所有轮换阶数的最小公倍数(lcm)。

一组数据的最小公倍数,可以依次求元素和当前最小公倍数的最小公倍数,最后的最小公倍数即为整组数据的最小公倍数。

// #pragma GCC optimize (2)
// #pragma G++ optimize (2)
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#define endl '\n'
#define int long long
#define lowbit(x) x &(-x)
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define TLE(){ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);}
using namespace std;
typedef long long ll;
const int N = 2e5 + 10;
int gcd(int a,int b)
{
	return b ? gcd (b, a % b) : a;
}
int lcm(int a,int b)
{
	return a / gcd(a,b) * b;
}
char s[2000];int p[N];
bool vis[N];
void solve()
{
    int n;
    cin>>n;
    cin>>s;
    for(int i=1;i<=n;i++)vis[i]=false;
    rep(i,0,n-1)
    {
    	cin>>p[i];
    	p[i]--;
    }
    int ans=1;
    rep(i,0,n-1)
    {
    	if (vis[i]) continue;
            vis[i] = true;
            int u = p[i];
            string t = string (1, s[i]);
            while (u != i) //获取一个轮换子序列
            {
                vis[u] = true;
                t += s[u];
                u = p[u];
            }
        int cnt=(t+t).find(t,1);//求得当前轮换的阶数
        ans=lcm(ans,cnt);
    }
    cout<<ans<<endl;
    return;
}
signed main()
{
    TLE();
    int T;
    //T = 1;
    cin>>T;
    while (T--)
        solve();
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值