leetcode最小路径和(动态规划)
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。 输入: [[1,3,1], [1,5,1], [4,2,1]] 输出: 7 解释: 因为路径
1→3→1→1→1 的总和最小。 来源:力扣(LeetCode)
该题采用动态规划思想,类似于矩阵链
求左上角到右下角经过路径加和最小值min,则设置代价矩阵mim:
mim [i] [j] = min(mim [i] [j-1] , mim [i-1] [j]) + grid [i] [j]
然后处理下边界情况,即可构造出最优解,我的解采用的是从目标节点向起始节点反向计算。
// 优化
查看排名靠前的解,代价矩阵可以不设,因为只使用一次,无需备忘录,直接将grid值覆盖即可!
然后简化计算,首先直接得出边界值,再计算其他值,速度也会有小提升。
class Solution {
public int minPathSum(int[][] grid) {
int m = grid.length,n = grid[0].length;
int[][] mim= new int[m][n];
mim[m-1][n-1] = grid[m-1][n-1];
for (int i = m-1 ; i >= 0 ; i--) {
for (int j = n-1; j >= 0; j--) {
if(j==n-1 && i==m-1)continue;
if( j==n-1 ){
mim[i][j] = mim[i+1][j] + grid[i][j];
}else if(i == m-1){
mim[i][j] = mim[i][j+1] + grid[i][j];
}else{
mim[i][j] = mim[i][j+1]<mim[i+1][j]?mim[i][j+1]+grid[i][j]:mim[i+1][j]+grid[i][j];
}
//System.out.println(mim[i][j]);
}
}
return mim[0][0];
}
}