what is Neural Network?
1、Neural Network Representation
只有一个隐藏层的神经网络:双层神经网络只有一个隐藏层。
隐藏层是第一层(双层神经网络)
2、Computing a Neural Network's Output
神经网络到底在计算什么
第一个节点:
第一步计算z,第二步计算激活函数sigmoid(z)
4.Vectorizing across multiple examples
如何向量化:
5.Explanation for vectorized implementation
6.如何使用不用的激活函数 Activation functions
会用sigmo函数的场合(1:希望y^的值介于0~1之间。2:使用二分类时)
ReLU函数
ReLU的缺点:
在实践种使用ReLU激活函数很快的原因就是ReLU没有这种函数斜率接近于0时,减慢学习速度的效应。
不同激活函数的优缺点:
7.为什么要使用activation functions
8.Derivatives of activation functions
9.梯度下降算法的具体实现 如何处理单隐层神经网络
Gradient descent for neural networks
10.计算梯度(选看)
11.随机初始化
0.01可以