吴恩达深度学习课程第一课(第三周) — 浅层神经网络

what is Neural Network?

 

1、Neural Network Representation

只有一个隐藏层的神经网络:双层神经网络只有一个隐藏层。

隐藏层是第一层(双层神经网络)

2、Computing a Neural Network's Output

神经网络到底在计算什么

第一个节点:

第一步计算z,第二步计算激活函数sigmoid(z)

4.Vectorizing across multiple examples

如何向量化:

 

5.Explanation for vectorized implementation

6.如何使用不用的激活函数  Activation functions

会用sigmo函数的场合(1:希望y^的值介于0~1之间。2:使用二分类时)

ReLU函数

ReLU的缺点:

在实践种使用ReLU激活函数很快的原因就是ReLU没有这种函数斜率接近于0时,减慢学习速度的效应。

不同激活函数的优缺点:

 

7.为什么要使用activation functions

8.Derivatives of activation functions

9.梯度下降算法的具体实现 如何处理单隐层神经网络

Gradient descent for neural networks

10.计算梯度(选看)

11.随机初始化

0.01可以

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值