自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 资源 (8)
  • 收藏
  • 关注

原创 02 搭建Java开发环境

“工欲善其事,必先利其器”。 在开发和使用Java之前,必须先了解并搭建好它所需的开发环境。要编译执行Java程序JDK是必不可少的工具。下面介绍Java开发环境的搭建。01 JDK下载Java的JDK又称Java SE(以前称J2SE),是Sun公司的产本,由于Sun公司已经被Oracle收购,因此JDK可以在Oracle公司的官方网站(http://www.oracle.com

2015-06-14 15:01:42 485 1

原创 01 Java学习之Java简介

01 Java学习之Java简介最近开始好好学习Java,决定每天写博文来勉励自己。有什么不正确的地方请告知于我,谢谢!(1070898673@qq.com)1. 什么是Java语言Java是在1995年由Sun公司推出的一种面向对象的程序设计语言,它由Java之父詹姆斯•戈士林博士设计。詹姆斯•戈士林作为Sun研究院院士亲自设计了Java语言,并且完成了Java技术的原始编译器和虚拟机。Java最

2015-06-11 23:58:19 1563

转载 欢迎使用CSDN-markdown编辑器

欢迎使用Markdown编辑器写博客本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦: Markdown和扩展Markdown简洁的语法 代码块高亮 图片链接和图片上传 LaTex数学公式 UML序列图和流程图 离线写博客 导入导出Markdown文件 丰富的快捷键 快捷键 加粗 Ctrl + B 斜体 Ctrl + I 引用 Ctrl

2015-05-14 13:28:01 317

《系统集成项目管理工程师真题解析(2010-2016)》

(2010-2016)系统集成项目管理工程师真题解析,软考真题解析来源:http://down.51cto.com/data/2441794 (已解密,可打印可编辑)

2018-10-10

ElasticSearch 组件 Head 谷歌浏览器插件0.1.3_0

ElasticSearch5.0以上 组件 Head 谷歌浏览器插件 0.1.3_0 ElasticSearch_Head 组件最简单安装方法 在谷歌浏览器上面设置里通过更多工具找到扩展程序(这就是安装浏览器提供的插件或安装外置插件的地方),单击扩展程序,打开。 此时打开扩展程序页面后,勾选开发者模式(很重要,决定能否安装外置插件),会多出很多图标 直接吧crx文件拖拽到扩展页面

2018-06-20

The Princeton Companion to Mathematics

The Princeton Companion to Mathematics 作者: Gowers, Timothy (EDT)/ Barrow-Green, June (EDT)/ Leader, Imre (EDT) 出版社: Princeton University Press 出版日期: 2008-9-28 总页数: 1056 定价: USD 99.50 装帧: Hardcover ISBN: 9780691118802 ************************************************************ This is a one-of-a-kind reference for anyone with a serious interest in mathematics. Edited by Timothy Gowers, a recipient of the Fields Medal, it presents nearly two hundred entries, written especially for this book by some of the world's leading mathematicians, that introduce basic mathematical tools and vocabulary; trace the development of modern mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and music--and much, much more. Unparalleled in its depth of coverage, The Princeton Companion to Mathematics surveys the most active and exciting branches of pure mathematics, providing the context and broad perspective that are vital at a time of increasing specialization in the field. Packed with information and presented in an accessible style, this is an indispensable resource for undergraduate and graduate students in mathematics as well as for researchers and scholars seeking to understand areas outside their specialties. * Features nearly 200 entries, organized thematically and written by an international team of distinguished contributors * Presents major ideas and branches of pure mathematics in a clear, accessible style * Defines and explains important mathematical concepts, methods, theorems, and open problems * Introduces the language of mathematics and the goals of mathematical research * Covers number theory, algebra, analysis, geometry, logic, probability, and more * Traces the history and development of modern mathematics * Profiles more than ninety-five mathematicians who influenced those working today * Explores the influence of mathematics on other disciplines * Includes bibliographies, cross-references, and a comprehensive index ************************************************************ 目录: TABLE OF CONTENTS: Preface ix Contributors xvii Part I Introduction I.1 What Is Mathematics About? 1 I.2 The Language and Grammar of Mathematics 8 I.3 Some Fundamental Mathematical Definitions 16 I.4 The General Goals of Mathematical Research 48 Part II The Origins of Modern Mathematics II.1 From Numbers to Number Systems 77 II.2 Geometry 83 II.3 The Development of Abstract Algebra 95 II.4 Algorithms 106 II.5 The Development of Rigor in Mathematical Analysis 117 II.6 The Development of the Idea of Proof 129 II.7 The Crisis in the Foundations of Mathematics 142 Part III Mathematical Concepts III.1 The Axiom of Choice 157 III.2 The Axiom of Determinacy 159 III.3 Bayesian Analysis 159 III.4 Braid Groups 160 III.5 Buildings 161 III.6 Calabi-Yau Manifolds 163 III.7 Cardinals 165 III.8 Categories 165 III.9 Compactness and Compactification 167 III.10 Computational Complexity Classes 169 III.11 Countable and Uncountable Sets 170 III.12 C*-Algebras 172 III.13 Curvature 172 III.14 Designs 172 III.15 Determinants 174 III.16 Differential Forms and Integration 175 III.17 Dimension 180 III.18 Distributions 184 III.19 Duality 187 III.20 Dynamical Systems and Chaos 190 III.21 Elliptic Curves 190 III.22 The Euclidean Algorithm and Continued Fractions 191 III.23 The Euler and Navier-Stokes Equations 193 III.24 Expanders 196 III.25 The Exponential and Logarithmic Functions 199 III.26 The Fast Fourier Transform 202 III.27 The Fourier Transform 204 III.28 Fuchsian Groups 208 III.29 Function Spaces 210 III.30 Galois Groups 213 III.31 The Gamma Function 213 III.32 Generating Functions 214 III.33 Genus 215 III.34 Graphs 215 III.35 Hamiltonians 215 III.36 The Heat Equation 216 III.37 Hilbert Spaces 219 III.38 Homology and Cohomology 221 III.39 Homotopy Groups 221 III.40 The Ideal Class Group 221 III.41 Irrational and Transcendental Numbers 222 III.42 The Ising Model 223 III.43 Jordan Normal Form 223 III.44 Knot Polynomials 225 III.45 K-Theory 227 III.46 The Leech Lattice 227 III.47 L-Functions 228 III.48 Lie Theory 229 III.49 Linear and Nonlinear Waves and Solitons 234 III.50 Linear Operators and Their Properties 239 III.51 Local and Global in Number Theory 241 III.52 The Mandelbrot Set 244 III.53 Manifolds 244 III.54 Matroids 244 III.55 Measures 246 III.56 Metric Spaces 247 III.57 Models of Set Theory 248 III.58 Modular Arithmetic 249 III.59 Modular Forms 250 III.60 Moduli Spaces 252 III.61 The Monster Group 252 III.62 Normed Spaces and Banach Spaces 252 III.63 Number Fields 254 III.64 Optimization and Lagrange Multipliers 255 III.65 Orbifolds 257 III.66 Ordinals 258 III.67 The Peano Axioms 258 III.68 Permutation Groups 259 III.69 Phase Transitions 261 III.70 p 261 III.71 Probability Distributions 263 III.72 Projective Space 267 III.73 Quadratic Forms 267 III.74 Quantum Computation 269 III.75 Quantum Groups 272 III.76 Quaternions, Octonions, and Normed Division Algebras 275 III.77 Representations 279 III.78 Ricci Flow 279 III.79 Riemann Surfaces 282 III.80 The Riemann Zeta Function 283 III.81 Rings, Ideals, and Modules 284 III.82 Schemes 285 III.83 The Schrödinger Equation 285 III.84 The Simplex Algorithm 288 III.85 Special Functions 290 III.86 The Spectrum 294 III.87 Spherical Harmonics 295 III.88 Symplectic Manifolds 297 III.89 Tensor Products 301 III.90 Topological Spaces 301 III.91 Transforms 303 III.92 Trigonometric Functions 307 III.93 Universal Covers 309 III.94 Variational Methods 310 III.95 Varieties 313 III.96 Vector Bundles 313 III.97 Von Neumann Algebras 313 III.98 Wavelets 313 III.99 The Zermelo-Fraenkel Axioms 314 Part IV Branches of Mathematics IV.1 Algebraic Numbers 315 IV.2 Analytic Number Theory 332 IV.3 Computational Number Theory 348 IV.4 Algebraic Geometry 363 IV.5 Arithmetic Geometry 372 IV.6 Algebraic Topology 383 IV.7 Differential Topology 396 IV.8 Moduli Spaces 408 IV.9 Representation Theory 419 IV.10 Geometric and Combinatorial Group Theory 431 IV.11 Harmonic Analysis 448 IV.12 Partial Differential Equations 455 IV.13 General Relativity and the Einstein Equations 483 IV.14 Dynamics 493 IV.15 Operator Algebras 510 IV.16 Mirror Symmetry 523 IV.17 Vertex Operator Algebras 539 IV.18 Enumerative and Algebraic Combinatorics 550 IV.19 Extremal and Probabilistic Combinatorics 562 IV.20 Computational Complexity 575 IV.21 Numerical Analysis 604 IV.22 Set Theory 615 IV.23 Logic and Model Theory 635 IV.24 Stochastic Processes 647 IV.25 Probabilistic Models of Critical Phenomena 657 IV.26 High-Dimensional Geometry and Its Probabilistic Analogues 670 Part V Theorems and Problems V.1 The ABC Conjecture 681 V.2 The Atiyah-Singer Index Theorem 681 V.3 The Banach-Tarski Paradox 684 V.4 The Birch-Swinnerton-Dyer Conjecture 685 V.5 Carleson's Theorem 686 V.6 The Central Limit Theorem 687 V.7 The Classification of Finite Simple Groups 687 V.8 Dirichlet's Theorem 689 V.9 Ergodic Theorems 689 V.10 Fermat's Last Theorem 691 V.11 Fixed Point Theorems 693 V.12 The Four-Color Theorem 696 V.13 The Fundamental Theorem of Algebra 698 V.14 The Fundamental Theorem of Arithmetic 699 V.15 Gödel's Theorem 700 V.16 Gromov's Polynomial-Growth Theorem 702 V.17 Hilbert's Nullstellensatz 703 V.18 The Independence of the Continuum Hypothesis 703 V.19 Inequalities 703 V.20 The Insolubility of the Halting Problem 706 V.21 The Insolubility of the Quintic 708 V.22 Liouville's Theorem and Roth's Theorem 710 V.23 Mostow's Strong Rigidity Theorem 711 V.24 The P versus NP Problem 713 V.25 The Poincaré Conjecture 714 V.26 The Prime Number Theorem and the Riemann Hypothesis 714 V.27 Problems and Results in Additive Number Theory 715 V.28 From Quadratic Reciprocity to Class Field Theory 718 V.29 Rational Points on Curves and the Mordell Conjecture 720 V.30 The Resolution of Singularities 722 V.31 The Riemann-Roch Theorem 723 V.32 The Robertson-Seymour Theorem 725 V.33 The Three-Body Problem 726 V.34 The Uniformization Theorem 728 V.35 The Weil Conjectures 729 Part VI Mathematicians VI.1 Pythagoras (ca. 569 B.C.E.-ca. 494 B.C.E.) 733 VI.2 Euclid (ca. 325 B.C.E.-ca. 265 B.C.E.) 734 VI.3 Archimedes (ca. 287 B.C.E.-212 B.C.E.) 734 VI.4 Apollonius (ca. 262 B.C.E.-ca. 190 B.C.E.) 735 VI.5 Abu Ja'far Muhammad ibn Musa al-Khwarizmi (800-847) 736 VI.6 Leonardo of Pisa (known as Fibonacci) (ca. 1170-ca. 1250) 737 VI.7 Girolamo Cardano (1501-1576) 737 VI.8 Rafael Bombelli (1526-after 1572) 737 VI.9 François Viète (1540-1603) 737 VI.10 Simon Stevin (1548-1620) 738 VI.11 René Descartes (1596-1650) 739 VI.12 Pierre Fermat (160?-1665) 740 VI.13 Blaise Pascal (1623-1662) 741 VI.14 Isaac Newton (1642-1727) 742 VI.15 Gottfried Wilhelm Leibniz (1646-1716) 743 VI.16 Brook Taylor (1685-1731) 745 VI.17 Christian Goldbach (1690-1764) 745 VI.18 The Bernoullis (fl. 18th century) 745 VI.19 Leonhard Euler (1707-1783) 747 VI.20 Jean Le Rond d'Alembert (1717-1783) 749 VI.21 Edward Waring (ca. 1735-1798) 750 VI.22 Joseph Louis Lagrange (1736-1813) 751 VI.23 Pierre-Simon Laplace (1749-1827) 752 VI.24 Adrien-Marie Legendre (1752-1833) 754 VI.25 Jean-Baptiste Joseph Fourier (1768-1830) 755 VI.26 Carl Friedrich Gauss (1777-1855) 755 VI.27 Siméon-Denis Poisson (1781-1840) 757 VI.28 Bernard Bolzano (1781-1848) 757 VI.29 Augustin-Louis Cauchy (1789-1857) 758 VI.30 August Ferdinand Möbius (1790-1868) 759 VI.31 Nicolai Ivanovich Lobachevskii (1792-1856) 759 VI.32 George Green (1793-1841) 760 VI.33 Niels Henrik Abel (1802-1829) 760 VI.34 János Bolyai (1802-1860) 762 VI.35 Carl Gustav Jacob Jacobi (1804-1851) 762 VI.36 Peter Gustav Lejeune Dirichlet (1805-1859) 764 VI.37 William Rowan Hamilton (1805-1865) 765 VI.38 Augustus De Morgan (1806-1871) 765 VI.39 Joseph Liouville (1809-1882) 766 VI.40 Eduard Kummer (1810-1893) 767 VI.41 Évariste Galois (1811-1832) 767 VI.42 James Joseph Sylvester (1814-1897) 768 VI.43 George Boole (1815-1864) 769 VI.44 Karl Weierstrass (1815-1897) 770 VI.45 Pafnuty Chebyshev (1821-1894) 771 VI.46 Arthur Cayley (1821-1895) 772 VI.47 Charles Hermite (1822-1901) 773 VI.48 Leopold Kronecker (1823-1891) 773 VI.49 Georg Friedrich Bernhard Riemann (1826-1866) 774 VI.50 Julius Wilhelm Richard Dedekind (1831-1916) 776 VI.51 Émile Léonard Mathieu (1835-1890) 776 VI.52 Camille Jordan (1838-1922) 777 VI.53 Sophus Lie (1842-1899) 777 VI.54 Georg Cantor (1845-1918) 778 VI.55 William Kingdon Clifford (1845-1879) 780 VI.56 Gottlob Frege (1848-1925) 780 VI.57 Christian Felix Klein (1849-1925) 782 VI.58 Ferdinand Georg Frobenius (1849-1917) 783 VI.59 Sofya (Sonya) Kovalevskaya (1850-1891) 784 VI.60 William Burnside (1852-1927) 785 VI.61 Jules Henri Poincaré (1854-1912) 785 [Illustration credit: Portrait courtesy of Henri Poincaré Archives (CNRS,UMR 7117, Nancy)] VI.62 Giuseppe Peano (1858-1932) 787 VI.63 David Hilbert (1862-1943) 788 VI.64 Hermann Minkowski (1864-1909) 789 VI.65 Jacques Hadamard (1865-1963) 790 VI.66 Ivar Fredholm (1866-1927) 791 VI.67 Charles-Jean de la Vallée Poussin (1866-1962) 792 VI.68 Felix Hausdorff (1868-1942) 792 VI.69 Élie Joseph Cartan (1869-1951) 794 VI.70 Emile Borel (1871-1956) 795 VI.71 Bertrand Arthur William Russell (1872-1970) 795 VI.72 Henri Lebesgue (1875-1941) 796 VI.73 Godfrey Harold Hardy (1877-1947) 797 VI.74 Frigyes (Frédéric) Riesz (1880-1956) 798 VI.75 Luitzen Egbertus Jan Brouwer (1881-1966) 799 VI.76 Emmy Noether (1882-1935) 800 VI.77 Wac?aw Sierpinski (1882-1969) 801 VI.78 George Birkhoff (1884-1944) 802 VI.79 John Edensor Littlewood (1885-1977) 803 VI.80 Hermann Weyl (1885-1955) 805 VI.81 Thoralf Skolem (1887-1963) 806 VI.82 Srinivasa Ramanujan (1887-1920) 807 VI.83 Richard Courant (1888-1972) 808 VI.84 Stefan Banach (1892-1945) 809 VI.85 Norbert Wiener (1894-1964) 811 VI.86 Emil Artin (1898-1962) 812 VI.87 Alfred Tarski (1901-1983) 813 VI.88 Andrei Nikolaevich Kolmogorov (1903-1987) 814 VI.89 Alonzo Church (1903-1995) 816 VI.90 William Vallance Douglas Hodge (1903-1975) 816 VI.91 John von Neumann (1903-1957) 817 VI.92 Kurt Gödel (1906-1978) 819 VI.93 André Weil (1906-1998) 819 VI.94 Alan Turing (1912-1954) 821 VI.95 Abraham Robinson (1918-1974) 822 VI.96 Nicolas Bourbaki (1935-) 823 Part VII The Influence of Mathematics VII.1 Mathematics and Chemistry 827 VII.2 Mathematical Biology 837 VII.3 Wavelets and Applications 848 VII.4 The Mathematics of Traffic in Networks 862 VII.5 The Mathematics of Algorithm Design 871 VII.6 Reliable Transmission of Information 878 VII.7 Mathematics and Cryptography 887 VII.8 Mathematics and Economic Reasoning 895 VII.9 The Mathematics of Money 910 VII.10 Mathematical Statistics 916 VII.11 Mathematics and Medical Statistics 921 VII.12 Analysis, Mathematical and Philosophical 928 VII.13 Mathematics and Music 935 VII.14 Mathematics and Art 944 Part VIII Final Perspectives VIII.1 The Art of Problem Solving 955 VIII.2 "Why Mathematics?" You Might Ask 966 VIII.3 The Ubiquity of Mathematics 977 VIII.4 Numeracy 983 VIII.5 Mathematics: An Experimental Science 991 VIII.6 Advice to a Young Mathematician 1000 VIII.7 A Chronology of Mathematical Events 1010 Index 1015

2016-08-23

数字图像处理原理与实践 基于Visual C++开发(带书签).part2(总共2)

 本书全面系统地讲述了在visualc++环境下进行数字图像处理编程的技术和方法。全书共分成14章,针对数字图像处理领域中的核心话题,如色彩空间、图像文件格式、图像的点运算、图像的几何变换、图像的增强处理、边缘检测和轮廓跟踪、图像形态学、图像分割、图像加密等,进行了详细的介绍。另外,针对visualc++2005下的数字图像处理开发,本书还对设备无关位图、图形设备接口、opencv及imagemagick等在实际开发中常用的具体技术进行了讲解,并辅以大量实例代码,具有很强的参考价值。   本书兼有源于实践、贴近应用、深入浅出、通俗易懂的优点,又紧跟时代脉搏,牢牢把握最新技术方向,从案例出发强调新环境下的新方法。本书内容实用、体例新颖,既可以作为希望进行数字图像处理学习和研究的初学者的自学教材,也可作为大专院校计算机及相关专业师生或工程技术人员的参考书。 作者简介   左飞,服务于中国规模最大的移动通信运营商,业余时间他撰写了多部计算机方面的著作,并译有《编码》、《提高C++性能的编程技术》等经典名作。 目录 第1章 visual c++与数字图像处理  1.1 数字图像处理概述   1.1.1 图像与数字图像   1.1.2 数字图像处理研究的内容   1.1.3 数字图像处理的应用  1.2 visual c++概述   1.2.1 编程语言的奇迹   1.2.2 visual c++简介   1.2.3 卓越的集成开发环境  1.3 在visual c++中处理数字图像   1.3.1 位图和调色板   1.3.2 图形设备接口   1.3.3 opencv   1.3.4 imagemagick  1.4 本章实例:利用visual c++实现画图程序   1.4.1 实例预览   1.4.2 开始创建项目   1.4.3 完成实例编码 第2章 色彩系统  2.1 学习图像处理从认识色彩开始   2.1.1 什么是颜色   2.1.2 颜色的属性   2.1.3 光源能量分布图  2.2 cie色度图   2.2.1 cie色彩模型的建立   2.2.2 cie色度图的理解   2.2.3 cie色度图的后续发展  2.3 常用色彩空间   2.3.1 rgb颜色空间   2.3.2 cmy/cmyk颜色空间   2.3.3 hsv/hsb颜色空间   2.3.4 hsi/hsl颜色空间   2.3.5 lab颜色空间   2.3.6 yuv/ycbcr颜色空间  2.4 色彩空间的转换方法   2.4.1 rgb转换到hsv的方法   2.4.2 rgb转换到hsi的方法   2.4.3 rgb转换到yuv的方法   2.4.4 rgb转换到ycbcr的方法  2.5 本章实例:photoshop色彩编辑器的实现   2.5.1 需要解决的若干问题   2.5.2 开始创建项目   2.5.3 完成实例编码 第3章 图像文件的格式与编码  3.1 图像文件概述   3.1.1 图像文件   3.1.2 图像文件的一般结构   3.1.3 图像文件的常用参数  3.2 bmp文件格式   3.2.1 文件结构   3.2.2 文件头和信息头   3.2.3 主要参数  3.3 gif文件格式   3.3.1 gif格式简介   3.3.2 gif文件结构   3.3.3 gif文件块的结构  3.4 png文件格式   3.4.1 png格式简介   3.4.2 png文件结构   3.4.3 png中的关键数据块  3.5 离散余弦变换   3.5.1 基本概念及数学描述   3.5.2 离散余弦变换的意义   3.5.3 离散余弦变换的实现  3.6 图像的压缩编码   3.6.1 霍夫曼(huffman)编码   3.6.2 lzw编码   3.6.3 行程编码  3.7 jpeg文件及其解码程序的实现   3.7.1 jpeg文件概述   3.7.2 jpeg的编解码原理   3.7.3 jpeg文件的格式   3.7.4 jpeg解码程序的实现 第4章 使用dib处理数字图像 第5章 使用gdi+处理数字图像 第6章 常见图像显示特效 第7章 图像的点运算 第8章 对图像进行几何变换 第9章 图像的增强处理 第10章 图像的边缘和轮廓 第11章 图像的形态学处理 第12章 数字图像的加密与隐藏 第13章 使用opencv处理数字图像 第14章 使用imagemagick处理图像 参考文献

2015-06-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除