二维矩阵查找元素查找元素相关算法
在一个二维矩阵(n * m)中查找是否存在某个值,存在返回true, 否则返回false; 我们直接能想到的一个算法就是直接暴力枚举,这当然没错,最坏的时间复杂度就算 O(n * m), 但相关题目会给出矩阵的相关特点,以此来进行优化. 有时候面试题也并不是看你能不能AC过,而是给你条件看你如何相关优化朴素算法。
来看一道 LeetCode 的相关题目
题目链接 : Lc 74. 搜索二维矩阵
编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵
具有如下特性:
. 每行中的整数从左到右按升序排列。
. 每行的第一个整数大于前一行的最后一个整数。
从上面的特性可以知道,每一行都是递增的,且每一行的第一个整数大于前一行的最后一个数, 即整个矩阵是递增的,如果将矩阵转化为一维的话,那么就算递增的, 对于这种单调递增的特点,我们可以实现O(logn)的时间复杂度,即二分查找的方法, 这样时间复杂度即为 O(log n*m); 故这里实现的关键是:
(1) 二维下标转化为对应的一维下标
下标从0开始, 在一个n * m 的二维数组中;
. arr[r][c] 其对应的一维下标为: r * m + c;
. 对于一维数组的第k个其在n * m 的位置为 arr[k / m][k % m];
(2) 二分查找算法
整数二分模板, 经典模板建议背过,可以避免一些烦人的边界问题
bool check(int x) {/* ... */} // 检查x是否满足某种性质
// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
int bsearch_1(int l, int r)
{
while (l < r)
{
int mid = l + r >> 1;
if (check(mid)) r = mid; // check()判断mid是否满足性质
else l = mid + 1;
}
return l;
}
// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int bsearch_2(int l, int r)
{
while (l < r)
{
int mid = l + r + 1 >> 1; //注意这里必须上取整 + 1, 不然l = mid, 可能在两个的情况下无限递归.
if (check(mid)) l = mid;
else r = mid - 1;
}
return l;
}
上面的两个模板是二分两种情况的模板, 即当检查此时中间位置的值满足一定条件之后。
(1) 应该在左半部分查找,此时的 r = mid , 否则在右半部分查找时, l = mid + 1。
(2) 应该在右半部分查找,此时 l = mid, 否则应该在左半部分查找,r = mid - 1;
注意这两种代码的区别 : 区别在于对于上取整还是下取整的处理,bsearch_1中使用了 int mid = l + r >> 1; 即 (l + r) / 2; C++的整数除法是下取整的方式, 如果这里用了上取整会出现死循环, 若此时的更新为 int mid = l + r + 1 >> 1;
即上取整的方式, 则当二分查找到只有两个元素时, 即出现 r = l + 1这种情况时, int mid = (l + r + 1) / 2 = l + 1 = r, 若此时满足判断条件r会被更新为mid, 而此时mid就算r, 故就会陷入死循环, 故这里不能用上取整,同样道理
bsearch_2不能使用下取整,否则也会进入死循环.
C++实现代码
class Solution
{
public:
bool searchMatrix(vector<vector<int>>& matrix, int target)
{
int n = matrix.size(), m = matrix[0].size();
int l = 0, r = n * m - 1;
while(l < r)
{
int mid = l + r >> 1;
if(matrix[mid / m][mid % m] >= target) r = mid;
else l = mid + 1;
}
// 上面的二分查找找的是大于等于target的第一个数, 故最后还是要判断是否为目标值
return target == matrix[l / m][l % m];
}
};
接下来再来看一道也是二维矩阵查找问题,不过这次给出的矩阵信息少了一个,在这种情况下的查找该如何进行优化。
相关题目链接: AcWing 15. 二维数组中的查找
在一个二维数组中
. 每一行都按照从左到右递增的顺序排序
. 每一列都按照从上到下递增的顺序排序。
这里的话这个二维矩阵并不是一个严格递增的,故这里的话不能二分直接来做。但是观察之后我们发现对于这样一个矩阵, 可以发现这个矩阵有如下的规律 :
故我们发现其右上角的元素有如上规律, 我们只需比较矩阵右上角的值和当前目标值的大小关系即可, 若右上角的值小于目标值, 表示右上角所在的当前行的元素均小于目标值,直接将这一行剔除即可, 同样若此时右上角的值大于目标值,则表示此时右上角所在的那一列的值都大于目标值,故我们需要把这一列剔除。然后我们继续比较新矩阵中的右上角的值与目标值的大小关系。直到到达边界仍未找出,即说明该矩阵并没有改目标值,这样的话时间复杂度最坏为 O(n + m); 相比于暴力的O(n * m) 有优化.
C++代码实现
class Solution
{
public:
bool searchArray(vector<vector<int>> array, int target)
{
if(!array.size() || !array[0].size()) return false;
int i = 0, j = array[0].size() - 1;
while(i < array.size() && j >= 0)
{
if(array[i][j] == target) return true;
if(array[i][j] > target) --j;
else ++i;
}
return false;
}
};