Spark streaming整合Kafka之Direct方式

1.spark streaming应用程序编写

import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
import kafka.serializer.StringDecoder

object KafkaDirectWordCount {
  def main(args: Array[String]): Unit = {

        if(args.length != 2) {
          System.err.println("Usage: KafkaDirectWordCount <brokers> <topics>")
          System.exit(1)
        }

        val Array(brokers, topics) = args

        val sparkConf = new SparkConf().setAppName("KafkaDirectWordCount").setMaster("local[2]")

        val ssc = new StreamingContext(sparkConf, Seconds(5))

        val topicsSet = topics.split(",").toSet
        val kafkaParams = Map[String,String]("metadata.broker.list"-> brokers)

        val messages = KafkaUtils.createDirectStream[String,String,StringDecoder,StringDecoder](
        ssc,kafkaParams,topicsSet
        )

        messages.map(_._2).flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).print()

        ssc.start()
        ssc.awaitTermination()
      }
}
2.本地环境测试

启动zookeeper,kafka,kafak producer

输入brokers和topics值,启动应用程序,发现报错

Exception in thread "main" java.lang.ClassCastException: kafka.cluster.BrokerEndPoint cannot be cast to kafka.cluster.Broker

经排查,这是由于版本不兼容造成的,更改pom.xml中的依赖,将kafka版本改为0.8.2.1,问题解决

启动应用程序后,在服务器输入测试数据:a a b b c c c

得到结果


3.服务器测试

用maven将应用程序打包,上传到服务器

启动spark-submit,在kafka producer中输入测试数据:a a b b c c c

得到结果




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值