4.1树的基本概念

4.1树的基本概念

定义:树是N(N>=0)个结点的有限集合,N=0时,称为空树,这是一种特殊情况。在任意一颗非空树中应满足:

1)有且仅有一个特定的称为根的结点。

2)当N>1时,其余结点可分为m(m>0)个无互不相交的有限集合T1,T2,…,Tm,其中每一个集合本身又是一棵树,并且称其为根结点的子树。

结构:一对多的树型结构。

基本概念:

[外链图片转存失败(img-DneucDFb-1566394144751)(C:\Users\liuhao\AppData\Roaming\Typora\typora-user-images\1566390724740.png)]

[外链图片转存失败(img-eyLSNpll-1566394144752)(C:\Users\liuhao\AppData\Roaming\Typora\typora-user-images\1566390783816.png)]

树的特性:

@树中的结点树数等于所有结点的度数加1。

证明:除了根结点,每个结点和指向它的分支一一对应。

@度为m的树中第i层上至多有m^(i-1)个结点(i>=1).

归纳法:

1.i=1,第一层有一个结点。

2.假设i=n-1成立,最多有m^(n-2)个结点。

3.i=n,第n层最多有m*(m^(n-2)) = m^(n-1)。

所以假设成立。

@高度为h的m叉树至多有(m^h-1)/(m-1)个结点。

最大结点数=1+m+m^2+ m^3 +…+m^(h-1)= (1-m^h)/(1-m)。(等比公式)

3 +…+m^(h-1)= (1-m^h)/(1-m)。(等比公式)

@具有n个结点的m叉树的最小高度为 [logm(n(m-1)+1)] (向上取整)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值