ChatGLM3本地部署+Lora微调

文章介绍了如何从Git获取并配置ChatGLM3模型,包括拉取大文件、创建虚拟环境、安装依赖,以及使用Lora进行模型微调的过程,包括数据集预处理、配置参数和微调命令执行。

1. 本地部署

1.1 从Git拉取项目到本地

        ChatGLM3 是智谱AI和清华大学 KEG 实验室联合发布的对话预训练模型。

        Git地址连接

        由于模型的权重文件很大,故需从HuggingFace上拉取到models目录下。

        ChatGLM3-6B-base地址连接(不支持微调)

        ChatGLM3-6B地址连接

1.2 配置环境

        在conda创建一个虚拟环境,其中需要python版本建议3.11以上,随后配置cuda和torch,可以先使用nvidia-smi命令查看cuda支持的最高版本,随后按照pytorch官网的命令进行安装。

        切换到配置chatglm的conda环境后,使用pip install -r requirements.txt命令安装所需的包,若是单机单卡运行,可

1.3 本地运行ChatGLM3-6b 

在相应文件中把模型地址进行更换,随后在cd到basic_demo后运行py

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值