第一感觉就是最大全0子矩阵,但是不太一样,那么转化一下。
发现可选部分是0与1相间的,那么我们可以把可选部分的1都变成0,就变成最大全0子矩阵了。
考虑怎么变。
如果我们强制让最左上角的格子为0,那么对于一个格子(x, y)
(1)如果x和y奇偶性相同,且(x, y)上为1,那么这个格子应该变为0。
(2)如果x和y奇偶性不同,且(x, y)上为0,那么这个格子应该变为0。
(3)其他情况都为1。
这样我们求最大全0子矩阵就行了。
但是考虑到我们是强制让最左上角为0的,所以我们还要求最大全1子矩阵(只需要把矩阵反一下就行了)。
最大全0子矩阵的求法用悬链法。
/* Footprints In The Blood Soaked Snow */
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 2005;
int n, m, f[maxn][maxn], fsta[maxn], jsta[maxn], g[maxn][maxn], ans1, ans2;
inline int iread() {
int f = 1, x = 0; char ch = getchar();
for(; ch < '0' || ch > '9'; ch = getchar()) f = ch == '-' ? -1 : 1;
for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
return f * x;
}
inline void calc() {
for(int i = 1; i <= n; i++) {
int top = 0;
for(int j = 1; j <= m; j++) {
int jmin = j;
for(; top && f[i][j] <= fsta[top]; top--) {
ans1 = max(ans1, min((j - jsta[top]) * (j - jsta[top]), fsta[top] * fsta[top]));
ans2 = max(ans2, (j - jsta[top]) * fsta[top]);
jmin = jsta[top];
}
top++; fsta[top] = f[i][j]; jsta[top] = jmin;
}
}
}
int main() {
n = iread(); m = iread();
for(int i = 1; i <= n; i++) for(int j = 1; j <= m; j++) {
g[i][j] = iread();
if(((i & 1) == (j & 1) && g[i][j]) || ((i & 1) != (j & 1) && !g[i][j])) g[i][j] = 0;
else g[i][j] = 1;
}
for(int i = 1; i <= n; i++) for(int j = 1; j <= m; j++)
if(g[i][j]) f[i][j] = f[i - 1][j] + 1;
else f[i][j] = 0;
calc();
for(int i = 1; i <= n; i++) for(int j = 1; j <= m; j++) g[i][j] ^= 1;
for(int i = 1; i <= n; i++) for(int j = 1; j <= m; j++)
if(g[i][j]) f[i][j] = f[i - 1][j] + 1;
else f[i][j] = 0;
calc();
printf("%d\n%d\n", ans1, ans2);
return 0;
}