【BZOJ1057】[ZJOI2007]棋盘制作【最大全0子矩阵】【单调栈】【悬链法】

【题目链接】

第一感觉就是最大全0子矩阵,但是不太一样,那么转化一下。

发现可选部分是0与1相间的,那么我们可以把可选部分的1都变成0,就变成最大全0子矩阵了。

考虑怎么变。

如果我们强制让最左上角的格子为0,那么对于一个格子(x, y)

(1)如果x和y奇偶性相同,且(x, y)上为1,那么这个格子应该变为0。

(2)如果x和y奇偶性不同,且(x, y)上为0,那么这个格子应该变为0。

(3)其他情况都为1。

这样我们求最大全0子矩阵就行了。

但是考虑到我们是强制让最左上角为0的,所以我们还要求最大全1子矩阵(只需要把矩阵反一下就行了)。


最大全0子矩阵的求法用悬链法。

可以参考《浅谈用极大化思想解决最大子矩形问题》王知昆

/* Footprints In The Blood Soaked Snow */
#include <cstdio>
#include <algorithm>

using namespace std;

const int maxn = 2005;

int n, m, f[maxn][maxn], fsta[maxn], jsta[maxn], g[maxn][maxn], ans1, ans2;

inline int iread() {
	int f = 1, x = 0; char ch = getchar();
	for(; ch < '0' || ch > '9'; ch = getchar()) f = ch == '-' ? -1 : 1;
	for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
	return f * x;
}

inline void calc() {
	for(int i = 1; i <= n; i++) {
		int top = 0;
		for(int j = 1; j <= m; j++) {
			int jmin = j;
			for(; top && f[i][j] <= fsta[top]; top--) {
				ans1 = max(ans1, min((j - jsta[top]) * (j - jsta[top]), fsta[top] * fsta[top]));
				ans2 = max(ans2, (j - jsta[top]) * fsta[top]);
				jmin = jsta[top];
			}
			top++; fsta[top] = f[i][j]; jsta[top] = jmin;
		}
	}
}

int main() {
	n = iread(); m = iread();
	for(int i = 1; i <= n; i++) for(int j = 1; j <= m; j++) {
		g[i][j] = iread();
		if(((i & 1) == (j & 1) && g[i][j]) || ((i & 1) != (j & 1) && !g[i][j])) g[i][j] = 0;
		else g[i][j] = 1;
	}

	for(int i = 1; i <= n; i++) for(int j = 1; j <= m; j++)
		if(g[i][j]) f[i][j] = f[i - 1][j] + 1;
		else f[i][j] = 0;
	calc();

	for(int i = 1; i <= n; i++) for(int j = 1; j <= m; j++) g[i][j] ^= 1;
	for(int i = 1; i <= n; i++) for(int j = 1; j <= m; j++)
		if(g[i][j]) f[i][j] = f[i - 1][j] + 1;
		else f[i][j] = 0;
	calc();

	printf("%d\n%d\n", ans1, ans2);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值