【BZOJ1079】[SCOI2008]着色方案【计数DP】【奇怪的姿势】

【题目链接】

想了一天多,感觉似乎只能是5^15。看了一下题解,发现还能这么玩...

神奇的题。

【iwtwiioi的题解】

/* Footprints In The Blood Soaked Snow */
#include <cstdio>

using namespace std;

typedef unsigned long long ULL;

const int maxn = 16, maxm = 7;
const unsigned int p = 1000000007;

int n, dp[maxn][maxn][maxn][maxn][maxn][maxm];

inline int iread() {
	int f = 1, x = 0; char ch = getchar();
	for(; ch < '0' || ch > '9'; ch = getchar()) f = ch == '-' ? -1 : 1;
	for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
	return f * x;
}

inline int dfs(int a, int b, int c, int d, int e, int last) {
	if(!(a | b | c | d | e)) return 1;
	if(dp[a][b][c][d][e][last]) return dp[a][b][c][d][e][last];

	int ans = 0;
	if(a) ans = (ans + (ULL)(a - (last == 2)) * dfs(a - 1, b, c, d, e, 1) % p) % p;
	if(b) ans = (ans + (ULL)(b - (last == 3)) * dfs(a + 1, b - 1, c, d, e, 2) % p) % p;
	if(c) ans = (ans + (ULL)(c - (last == 4)) * dfs(a, b + 1, c - 1, d, e, 3) % p) % p;
	if(d) ans = (ans + (ULL)(d - (last == 5)) * dfs(a, b, c + 1, d - 1, e, 4) % p) % p;
	if(e) ans = (ans + (ULL)(e - (last == 6)) * dfs(a, b, c, d + 1, e - 1, 5) % p) % p;
	return dp[a][b][c][d][e][last] = ans;
}

int cnt[maxn];

int main() {
	n = iread();
	for(int i = 1; i <= n; i++) cnt[iread()]++;
	printf("%d\n", dfs(cnt[1], cnt[2], cnt[3], cnt[4], cnt[5], 0));
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值