设atr[u]表示,从根节点到u节点,缩小了多少次,即一路上每个节点的儿子个数之积。
设val[u]表示,atr[u] × u的权值。
val相等的点,如果其中一个点不改变权值的话,那么其他的点都不用改变。
那么我们取val的众数,用n减去众数的个数就是答案。
由于atr和val太大了,所以要取log。
/* Telekinetic Forest Guard */
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef double DB;
const int maxn = 500005;
const DB eps = 1e-6;
int n, head[maxn], cnt, du[maxn];
DB atr[maxn], val[maxn];
struct _edge {
int v, next;
} g[maxn << 1];
inline int iread() {
int f = 1, x = 0; char ch = getchar();
for(; ch < '0' || ch > '9'; ch = getchar()) f = ch == '-' ? -1 : 1;
for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
return f * x;
}
inline void add(int u, int v) {
g[cnt] = (_edge){v, head[u]};
head[u] = cnt++;
}
inline void dfs(int x, int f) {
val[x] = atr[x] + log(val[x]);
for(int i = head[x]; ~i; i = g[i].next) if(g[i].v ^ f) {
atr[g[i].v] = atr[x] + log(du[x] - 1);
dfs(g[i].v, x);
}
}
int main() {
n = iread();
for(int i = 1; i <= n; i++) head[i] = -1, val[i] = iread(); cnt = 0;
for(int i = 1; i < n; i++) {
int u = iread(), v = iread();
add(u, v); add(v, u);
du[u]++; du[v]++;
}
du[1]++;
dfs(1, 0);
sort(val + 1, val + 1 + n);
int ans = 0, tot = 1;
for(int i = 2; i <= n; i++)
if(val[i] - val[i - 1] < eps) tot++;
else ans = max(ans, tot), tot = 1;
ans = max(ans, tot);
printf("%d\n", n - ans);
return 0;
}