BraketBN

Think, Thank, Thunk.

【BZOJ1710】[Usaco2007 Open]Cheappal 廉价回文【区间DP】

【题目链接】

经典区间DP。

首先添加一个字符和删除一个字符是等价的,因为在一个位置添加一个字符,就等价与在对称回文的位置删除一个字符,删除同理。那么我们只需要考虑删除字符。

设dp[l][r]表示将[l, r]改为回文串的最小代价,那么有

(1)dp[l][r] = min(dp[l + 1][r] + cost[str[l]], dp[l][r - 1] + cost[str[r]])

(2)如果str[l] == str[r],那么dp[l][r] = min(dp[l][r], dp[l + 1][r - 1])

/* Telekinetic Forest Guard */
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int maxn = 2005, maxm = 28, inf = 0x3f3f3f3f;

int n, m, num[maxn], dp[maxn][maxn], cost[maxm];
char str[maxn];

inline int iread() {
	int f = 1, x = 0; char ch = getchar();
	for(; ch < '0' || ch > '9'; ch = getchar()) f = ch == '-' ? -1 : 1;
	for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
	return f * x;
}

inline int dfs(int l, int r) {
	if(l == r) return 0;
	if(~dp[l][r]) return dp[l][r];
	int res = inf;
	res = min(dfs(l + 1, r) + cost[num[l]], dfs(l, r - 1) + cost[num[r]]);
	if(num[l] == num[r]) res = min(res, dfs(l + 1, r - 1));
	return dp[l][r] = res;
}

int main() {
	m = iread(); n = iread();
	scanf("%s", str + 1);
	for(int i = 1; i <= n; i++) num[i] = str[i] - 'a' + 1;
	for(int i = 1; i <= m; i++) {
		int w1, w2;
		scanf("%s%d%d", str, &w1, &w2);
		cost[str[0] - 'a' + 1] = min(w1, w2);
	}
	for(int i = 1; i <= n; i++) for(int j = i; j <= n; j++) dp[i][j] = -1;
	printf("%d\n", dfs(1, n));
	return 0;
}


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/BraketBN/article/details/51548177
个人分类: 区间DP
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

【BZOJ1710】[Usaco2007 Open]Cheappal 廉价回文【区间DP】

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭