/*
P161
数组里边只需要存储有直线的行列以及其前后的行列就够了,
这样的话大小最多为 6n*6n就够了
10 10 5 w h n
1 1 4 9 10 x1
6 10 4 9 10 x2
4 8 1 1 6 y1
4 8 10 5 10 y2
6
*/
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
int dx[4]={0,0,-1,1};
int dy[4]={1,-1,0,0};
#define MAX_N 6*100
int W,H,N;// W*H的 矩阵 n为直线的条数
int X1[MAX_N],X2[MAX_N],Y1[MAX_N],Y2[MAX_N]; //x为列,y为行 (y1,x1)-(y2,x2)代表一条直线
bool fld[MAX_N*6][MAX_N*6]; //填充用
// 对x1 和 x2 进行坐标离散化,并返回离散化后的宽度
int compress(int *x1,int *x2,int w){
vector<int>xs;
for(int i=0;i<N;i++){
for(int d=-1;d<=1;d++){ //与它相邻的以及它本身
int tx1=x1[i]+d,tx2=x2[i]+d;
if(tx1>=1 && tx1<=W) xs.push_back(tx1);
if(tx2>=1 && tx2<=W) xs.push_back(tx2);
}
}
sort(xs.begin(),xs.end()); //有重复的,排序
xs.erase(unique(xs.begin(),xs.end()),xs.end());//删除重复的
for(int i=0;i<N;i++){
x1[i]=find(xs.begin(),xs.end(),x1[i])-xs.begin(); //离散化后的坐标
x2[i]=find(xs.begin(),xs.end(),x2[i])-xs.begin();
}
return xs.size();//返回总共的大小
}
void solve(){
//坐标离散化
W=compress(X1,X2,W);
H=compress(Y1,Y2,H);
//填充有直线的方块
memset(fld,0,sizeof(fld));
for(int i=0;i<N;i++) //直线的部分
for(int y=Y1[i];y<=Y2[i];y++){ // 行的范围
for(int x=X1[i];x<=X2[i];x++){ //列的范围
fld[y][x]=true;
}
}
//求区域的个数 ,广搜
int ans=0;
for(int y=0;y<H;y++){
for(int x=0;x<W;x++){
if(fld[y][x])
continue;
ans++;
queue<pair<int ,int> >que;
que.push(make_pair(x,y));
while(!que.empty()){
int sx=que.front().first,sy=que.front().second;
que.pop();
for(int i=0;i<4;i++){
int tx=sx+dx[i],ty=sy+dy[i];
if(tx<0 || W<=tx || ty<0 || ty>=H) continue;
if(fld[ty][tx]) continue;
que.push(make_pair(tx,ty));
fld[ty][tx]=true;
}
}
}
}
printf("%d\n",ans);
}
int main(){
scanf("%d%d%d",&W,&H,&N);
for(int i=0;i<N;i++)
scanf("%d",&X1[i]);
for(int i=0;i<N;i++)
scanf("%d",&X2[i]);
for(int i=0;i<N;i++)
scanf("%d",&Y1[i]);
for(int i=0;i<N;i++)
scanf("%d",&Y2[i]);
solve();
}
【坐标离散化】 挑战程序设计竞赛
最新推荐文章于 2020-12-01 07:03:28 发布