【坐标离散化】 挑战程序设计竞赛

/*
P161
 数组里边只需要存储有直线的行列以及其前后的行列就够了,
这样的话大小最多为 6n*6n就够了
10 10 5 w h n
1 1 4 9 10 x1
6 10 4 9 10 x2
4 8 1 1 6 y1
4 8 10 5 10 y2

6
*/

#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
int dx[4]={0,0,-1,1};
int dy[4]={1,-1,0,0};
#define MAX_N 6*100
int W,H,N;// W*H的 矩阵  n为直线的条数
int X1[MAX_N],X2[MAX_N],Y1[MAX_N],Y2[MAX_N]; //x为列,y为行 (y1,x1)-(y2,x2)代表一条直线
bool fld[MAX_N*6][MAX_N*6]; //填充用
// 对x1 和 x2 进行坐标离散化,并返回离散化后的宽度
int compress(int *x1,int *x2,int w){
    vector<int>xs;
    for(int i=0;i<N;i++){
        for(int d=-1;d<=1;d++){  //与它相邻的以及它本身
            int tx1=x1[i]+d,tx2=x2[i]+d;
            if(tx1>=1 && tx1<=W) xs.push_back(tx1);
            if(tx2>=1 && tx2<=W) xs.push_back(tx2);
        }
    }
    sort(xs.begin(),xs.end()); //有重复的,排序
    xs.erase(unique(xs.begin(),xs.end()),xs.end());//删除重复的
    for(int i=0;i<N;i++){
        x1[i]=find(xs.begin(),xs.end(),x1[i])-xs.begin(); //离散化后的坐标
        x2[i]=find(xs.begin(),xs.end(),x2[i])-xs.begin();
    }
    return xs.size();//返回总共的大小
}
void solve(){
    //坐标离散化
    W=compress(X1,X2,W);
    H=compress(Y1,Y2,H);
    //填充有直线的方块
    memset(fld,0,sizeof(fld));
    for(int i=0;i<N;i++) //直线的部分
        for(int y=Y1[i];y<=Y2[i];y++){  // 行的范围
            for(int x=X1[i];x<=X2[i];x++){ //列的范围
                fld[y][x]=true;
            }
    }
    //求区域的个数 ,广搜
    int ans=0;
    for(int y=0;y<H;y++){
        for(int x=0;x<W;x++){
            if(fld[y][x])
                continue;
            ans++;
            queue<pair<int ,int> >que;
            que.push(make_pair(x,y));
            while(!que.empty()){
                int sx=que.front().first,sy=que.front().second;
                que.pop();
                for(int i=0;i<4;i++){
                    int tx=sx+dx[i],ty=sy+dy[i];
                    if(tx<0 || W<=tx || ty<0 || ty>=H)  continue;
                    if(fld[ty][tx]) continue;
                    que.push(make_pair(tx,ty));
                    fld[ty][tx]=true;
                }
            }
        }
    }
    printf("%d\n",ans);
}
int main(){
    scanf("%d%d%d",&W,&H,&N);
    for(int i=0;i<N;i++)
        scanf("%d",&X1[i]);
    for(int i=0;i<N;i++)
        scanf("%d",&X2[i]);
        for(int i=0;i<N;i++)
        scanf("%d",&Y1[i]);
        for(int i=0;i<N;i++)
        scanf("%d",&Y2[i]);
        solve();
}

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值