例题1
解析
第一小问
根据条件等式,我们发现,每一项都含有边,但是,不是每一项都含有角
于是,我们要想到用正弦定理
把边换为角来解答该题
第二小问
略
例题2
解析
第一小问
两个等式条件,各个项都含有边,也同时含有角,所以,可以把边化为角,也可以把角化为边
那么,如何选择了?
我们看到,这里要求的是cosB
的值,所以,我们应该想到余弦定理
因此,我们应该把条件中的角换为边。
第二小问
略
例题3
解析
第一小问
问题是要我们求∠B的度数
给的等式条件中,各项都含有边,且含有cosx
项
所以,我们应该想到,用正弦定理
将边化为角,在利用两角和差公式,求解
我们,也可以用余弦定理,把角化成边
第二小问
略
例题4
解析
第一小问
这一小问,和例题3
是同类型的
这里,我依然建议,把边化为角,然后用两角和差公式求解
第二小问
略
例题5
解析
第一小问
问题中,是要我们求比值。
给的等式条件中,各项都含有边,但是,不是所有项都含有角
且待求分式的分子和分母也都含有边
所以,这里,要用正弦定理
把边转化成角来解题
第二小问
略
例题6
解析
第一小问
可以发现,给的条件,可以把角化为边,也可以把边化为角
这里我先用角化为边
,结合余弦定理
求解
在给出边化为角,结合两角和差公式,求解
第二小问
略
例题7
解析
第一小问
求比值关系
显然,各项都含有角,所以,可以选择角化边,然后,结合余弦定理求解
也可以选择边化角,结合两角和差公式求解
这里,我选择第二种解法
第二小问
略
例题8
解析
第一小问
将角化成边,在把cosC利用预选定理,转化成边的关系,从而得解
这里有个化简的技巧,分子分母同乘以4,从而变成2C平方
第二小问
略