Hadoop3:MapReduce工作流程图解

一、流程图

在这里插入图片描述在这里插入图片描述

二、流程说明

上面的流程是整个MapReduce最全工作流程,但是Shuffle过程只是从第7步开始到第16步结束,具体Shuffle过程详解,如下:
(1)MapTask收集我们的map()方法输出的kv对,放到内存缓冲区中
(2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件
(3)多个溢出文件会被合并成大的溢出文件
(4)在溢出过程及合并的过程中,都要调用Partitioner进行分区和针对key进行排序
(5)ReduceTask根据自己的分区号,去各个MapTask机器上取相应的结果分区数据
(6)ReduceTask会抓取到同一个分区的来自不同MapTask的结果文件,ReduceTask会将这些文件再进行合并(归并排序)
(7)合并成大文件后,Shuffle的过程也就结束了,后面进入ReduceTask的逻辑运算过程(从文件中取出一个一个的键值对Group,调用用户自定义的reduce()方法)
注意:
(1)Shuffle中的缓冲区大小会影响到MapReduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。
(2)缓冲区的大小可以通过参数调整,参数:mapreduce.task.io.sort.mb默认100M

mapred-default.xml

<property>
  <name>mapreduce.task.io.sort.mb</name>
  <value>100</value>
  <description>The total amount of buffer memory to use while sorting
  files, in megabytes.  By default, gives each merge stream 1MB, which
  should minimize seeks.</description>
</property>

三、注意点

1、对于第3步,提交信息,如果是Local本地模式,则不会提交wc.jar
2、第7步的环形缓冲区,在80%后,反向写入。
怎么理解反向写入?为什么要反向写入?
达到80%后,从尾部向头部写入,为了提高性能,这样做后,就可以同时将内存的数据写入到磁盘分区中,从头部开始写入到磁盘,从尾部写入到缓冲区,可以并发进行。当然,如果写入速度,大于写出速度,则依然会等待写出完,在进行写入。
在这里插入图片描述
3、第8步的分区内排序,采用的是快速排序算法,排序对象是环形缓冲区的索引排序。这样,效率更高。此时排序的数据依然在内存中。
在这里插入图片描述
4、第10步的分区合并,采用的是归并排序,此时,数据已经写入磁盘。
5、第12步的ReduceTask不一定需要等到所有的MapTask结束再开始。ReduceTask会主动去MapTask里拉取自己负责的分区数据,进行归并排序处理。

一个ReduceTask会生成一个结果文件,我们之前的WC案例中,没有设定ReduceTask数量,默认是1,所以,生成的结果文件就是1个

实现上述业务可以按照以下步骤进行: 1. 数据上传到HDFS:将本地数据通过hadoop fs -put命令上传到HDFS上,如:hadoop fs -put /data /input 2. 实现MapReduce程序:编写Map和Reduce函数,具体实现过程如下: - Map函数:将每个数据块的数据进行解析,生成key-value对,其中key为日期,value为流量。代码示例: ``` public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 解析数据,获取日期和流量 String[] fields = value.toString().split("\t"); String date = fields[0]; int traffic = Integer.parseInt(fields[1]); // 生成key-value对 context.write(new Text(date), new IntWritable(traffic)); } ``` - Reduce函数:将同一日期的流量进行累加,生成最终的总流量。代码示例: ``` public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; // 对同一日期的流量进行累加 for (IntWritable value : values) { sum += value.get(); } // 输最终的总流量 context.write(key, new IntWritable(sum)); } ``` 3. 配置MapReduce作业:配置MapReduce作业的输入路径、输路径、Map函数和Reduce函数等参数,具体实现过程如下: - 创建作业对象,设置作业名称 ``` Job job = Job.getInstance(conf, "traffic"); ``` - 设置作业的输入路径和输路径 ``` FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); ``` - 设置Map函数和Reduce函数 ``` job.setMapperClass(TrafficMapper.class); job.setReducerClass(TrafficReducer.class); ``` - 设置Map函数和Reduce函数的输类型 ``` job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); ``` 4. 运行MapReduce作业:将MapReduce程序打包成Jar包,然后通过hadoop jar命令提交作业到Hadoop集群上进行运行。代码示例: ``` hadoop jar traffic.jar Traffic /input /output ``` 上述过程的示意图如下: ![MapReduce计算框架示意图](https://img-blog.csdn.net/20170525143743293?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvenlsaWJhMTIz/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/q/80)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值