KNN图像分类(基于python3.6)

本文介绍了基于Python3.6的KNN图像分类方法,特别是针对CIFAR-10数据集。首先,详细说明了CIFAR-10数据集,它包含60000张32*32像素的图片,分为10个类别,并分为训练集和测试集。接着,展示了如何在Python3环境中读取和处理这个数据集,为应用KNN算法做准备。
摘要由CSDN通过智能技术生成

KNN图像分类(基于python3.6)


1.数据来源

CIFAR-10是一个常用的图像分类数据集。数据集包含60000张32*32像素的小图片,每张图片都有一个类别标注(总共有10类),分成了50000张的训练集和10000张的测试集。

python中提取CIFAR-10的代码如下:
a python2 routine which will open such a file and return a dictionary:

def unpickle(file):
    import cPickle
    with open(file, 'rb') as fo:
        dict = cPickle.load(fo)
    return dict

And a python3 version:

def unpickle(file):
    import pickle
    with open(file, 'rb') as fo:
        dict = pickle.load(fo, encoding='bytes')
    return dict

2.K最近邻分类器(K Nearset Neighbor Classifier )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值