二叉树的特性
结点的度:指的是该结点分支的个数,没有分支的结点的度为0,二叉树结点的度最大值为2
特性:
左结点值 <= 根结点值右结点值 >= 根结点值二分查找思想,查找的最大次数等于二叉树的高度
缺陷:插入结点容易导致树变成瘸子,导致查找性能大打折扣(为此引入了红黑树)二叉树的分类
满二叉树:除最后一层且最后一层无任何子节点外,每一层上的所有结点都有两个子结点的二叉树叫满二叉树;
完全二叉树: 一棵二叉树最多只有最下面的一层上的结点的度数可以小于2,并且最下层上的结点都集中在该层最左边的若干位置上,则此二叉树成为完全二叉树;
平衡二叉树:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树
红黑树:自平衡的二叉树
1.每个节点要么是红的,要么是黑的;
2.根节点必须是黑的;
3.每个叶子节点是黑的空节点;
4.如果父节点是红的,那么两个子节点是黑的;
5.对于每个节点,从该节点到其子孙节点的所有路径上包含相同数目的黑节点
更多红黑树的介绍, 如红黑树的变色、旋转等,可以查看链接:
https://zhuanlan.zhihu.com/p/31805309?utm_source=wechat_session&utm_medium=social