题目:P3469 [POI2008]BLO-Blockade
割点 - T a r j a n Tarjan Tarjan - 排列组合 - 数学
题目大意
给出一个
n
n
n 个点
m
m
m 条边的无向图,保证原图连通
对于每一个
x
,
y
x,y
x,y
x
≠
y
x \ne y
x=y
求出对于每一个点
x
x
x ,将点
x
x
x 删掉后,会有多少此访问发生不了
考虑每一个点是否是割点
如果不是割点:不会影响到其他人的之间的互相访问,只能影响跟自己有关的访问,总共
2
×
(
n
−
1
)
2 \times (n-1)
2×(n−1) 次
如果是割点:将会把原图分成
k
k
k 个连通块
k
>
1
k>1
k>1 ,不能发生的访问次数就是 所有连通块
i
i
i ,连通块
i
i
i 节点数乘以其他连通块节点数之和 的和,最后加上
2
×
(
n
−
1
)
2 \times (n-1)
2×(n−1)
也就是: s [ 1 ] × ( n − s [ 1 ] − 1 ) + s [ 2 ] × ( n − s [ 2 ] − 1 ) + ⋯ + s [ k ] × ( n − s [ k ] − 1 ) + 2 × ( n − 1 ) s[1] \times (n-s[1]-1)+s[2] \times (n-s[2]-1) + \dots +s[k] \times (n-s[k]-1) + 2\times (n-1) s[1]×(n−s[1]−1)+s[2]×(n−s[2]−1)+⋯+s[k]×(n−s[k]−1)+2×(n−1)
对于每一次 low[y] >= dfn[x]
,删除点
x
x
x 后的连通块个数就要加
1
1
1,最后记得加上
x
x
x 父亲所在的连通块!
关键代码:
void tarjan(long long x)
{
s[x]=1,dfn[x]=low[x]=++timecnt;
long long cnt=0,tot=0; // 分别计算连通块个数和连通块节点个数和
for(long long i=0;i<e[x].size();++i)
{
long long y=e[x][i];
if(!dfn[y])
{
tarjan(y);
low[x]=min(low[x],low[y]);
s[x]+=s[y];
if(low[y]>=dfn[x])
{
sum[x]+=s[y]*(n-s[y]-1);
tot+=s[y];
++cnt;
if(x!=1 || cnt>1)flag[x]=1; //因为保证全图连通,所以是从1开始遍历
}
}
low[x]=min(low[x],dfn[y]);
}
if(!flag[x])sum[x]=(n-1)<<1;
else sum[x]+=((n-1)<<1)+(tot*(n-tot-1)); // 最后这里是加上父亲那边的连通块贡献的个数
}
完整代码:
#include<cstdio>
#include<iostream>
#include<vector>
using namespace std;
const long long Maxn=100000+20,inf=0x3f3f3f3f;
long long sum[Maxn],dfn[Maxn],low[Maxn],s[Maxn];
bool flag[Maxn];
long long n,m,timecnt;
vector <long long> e[Maxn];
inline long long read()
{
long long s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0' && ch<='9')s=(s<<3)+(s<<1)+(ch^48),ch=getchar();
return s*w;
}
void tarjan(long long x)
{
s[x]=1,dfn[x]=low[x]=++timecnt;
long long cnt=0,tot=0;
for(long long i=0;i<e[x].size();++i)
{
long long y=e[x][i];
if(!dfn[y])
{
tarjan(y);
low[x]=min(low[x],low[y]);
s[x]+=s[y];
if(low[y]>=dfn[x])
{
sum[x]+=s[y]*(n-s[y]-1);
tot+=s[y];
++cnt;
if(x!=1 || cnt>1)flag[x]=1;
}
}
low[x]=min(low[x],dfn[y]);
}
if(!flag[x])sum[x]=(n-1)<<1;
else sum[x]+=((n-1)<<1)+(tot*(n-tot-1));
}
int main()
{
//freopen("in.txt","r",stdin);
n=read(),m=read();
for(long long i=1;i<=m;++i)
{
long long x=read(),y=read();
e[x].push_back(y);
e[y].push_back(x);
}
tarjan(1);
for(long long i=1;i<=n;++i)
printf("%lld\n",sum[i]);
return 0;
}