洛谷 P3469 [POI2008]BLO-Blockade 题解

题目:P3469 [POI2008]BLO-Blockade

割点 - T a r j a n Tarjan Tarjan - 排列组合 - 数学

题目大意

给出一个 n n n 个点 m m m 条边的无向图,保证原图连通
对于每一个 x , y x,y x,y x ≠ y x \ne y x=y
求出对于每一个点 x x x ,将点 x x x 删掉后,会有多少此访问发生不了

考虑每一个点是否是割点
如果不是割点:不会影响到其他人的之间的互相访问,只能影响跟自己有关的访问,总共 2 × ( n − 1 ) 2 \times (n-1) 2×(n1)
如果是割点:将会把原图分成 k k k 个连通块 k > 1 k>1 k>1 ,不能发生的访问次数就是 所有连通块 i i i ,连通块 i i i 节点数乘以其他连通块节点数之和 的和,最后加上 2 × ( n − 1 ) 2 \times (n-1) 2×(n1)

也就是: s [ 1 ] × ( n − s [ 1 ] − 1 ) + s [ 2 ] × ( n − s [ 2 ] − 1 ) + ⋯ + s [ k ] × ( n − s [ k ] − 1 ) + 2 × ( n − 1 ) s[1] \times (n-s[1]-1)+s[2] \times (n-s[2]-1) + \dots +s[k] \times (n-s[k]-1) + 2\times (n-1) s[1]×(ns[1]1)+s[2]×(ns[2]1)++s[k]×(ns[k]1)+2×(n1)

对于每一次 low[y] >= dfn[x],删除点 x x x 后的连通块个数就要加 1 1 1,最后记得加上 x x x 父亲所在的连通块!

关键代码:

void tarjan(long long x)
{
	s[x]=1,dfn[x]=low[x]=++timecnt;
	long long cnt=0,tot=0; // 分别计算连通块个数和连通块节点个数和
	for(long long i=0;i<e[x].size();++i)
	{
		long long y=e[x][i];
	
		if(!dfn[y])
		{
			tarjan(y);
			low[x]=min(low[x],low[y]);
			s[x]+=s[y];
			if(low[y]>=dfn[x])
			{
				sum[x]+=s[y]*(n-s[y]-1);
				tot+=s[y];
				++cnt;
				if(x!=1 || cnt>1)flag[x]=1; //因为保证全图连通,所以是从1开始遍历
			}
		}
		low[x]=min(low[x],dfn[y]);
	}
	if(!flag[x])sum[x]=(n-1)<<1;
	else sum[x]+=((n-1)<<1)+(tot*(n-tot-1)); // 最后这里是加上父亲那边的连通块贡献的个数
}

完整代码:

#include<cstdio>
#include<iostream>
#include<vector>
using namespace std;
const long long Maxn=100000+20,inf=0x3f3f3f3f;
long long sum[Maxn],dfn[Maxn],low[Maxn],s[Maxn];
bool flag[Maxn];
long long n,m,timecnt;
vector <long long> e[Maxn];
inline long long read()
{
	long long s=0,w=1;
	char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
	while(ch>='0' && ch<='9')s=(s<<3)+(s<<1)+(ch^48),ch=getchar();
	return s*w;
}
void tarjan(long long x)
{
	s[x]=1,dfn[x]=low[x]=++timecnt;
	long long cnt=0,tot=0;
	for(long long i=0;i<e[x].size();++i)
	{
		long long y=e[x][i];
	
		if(!dfn[y])
		{
			tarjan(y);
			low[x]=min(low[x],low[y]);
			s[x]+=s[y];
			if(low[y]>=dfn[x])
			{
				sum[x]+=s[y]*(n-s[y]-1);
				tot+=s[y];
				++cnt;
				if(x!=1 || cnt>1)flag[x]=1;
			}
		}
		low[x]=min(low[x],dfn[y]);
	}
	if(!flag[x])sum[x]=(n-1)<<1;
	else sum[x]+=((n-1)<<1)+(tot*(n-tot-1));
}
int main()
{
	//freopen("in.txt","r",stdin);
	n=read(),m=read();
	for(long long i=1;i<=m;++i)
	{
		long long x=read(),y=read();
		e[x].push_back(y);
		e[y].push_back(x);
	}
	tarjan(1);
	for(long long i=1;i<=n;++i)
	printf("%lld\n",sum[i]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值