题目大意
有一条数轴,在它的每个整数位置上有一个人
现在对于所有整数
k
k
k,位置
k
k
k 上的人会移动到位置
k
+
a
k
m
o
d
n
k+a_{k \mod n}
k+akmodn
问在所有人移动一次后,是否每个位置上都恰好有一个人
解题思路
我们可以把这题当成图论来做
对于每一个人的移动操作,我们把它视为一条有向边
[
k
,
k
+
a
k
m
o
d
n
]
[k,k+a_{k \mod n}]
[k,k+akmodn]
注意,我么需要把每条边的起点与终点
m
o
d
n
\mod n
modn,使得
a
a
a 中的每一个元素恰好对应一个位置
在加完边后,每一条以点 x x x 为终点的边表示有一个人在移动后停留在了点 x x x。而又因为每个点 x x x 恰好是一条有向边的起点(有一个人离开了点 x x x),所以我们计算答案是只需判断每个点的入度是否为 1 1 1 就可以了。
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int Maxn=200000+10,inf=0x3f3f3f3f;
int a[Maxn];
int ind[Maxn],n;
int main()
{
// freopen("in.txt","r",stdin);
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=0;i<n;++i)
{
scanf("%d",a+i);
if(a[i]>=0)a[i]%=n;
else a[i]=-((-a[i])%n);
if(i+a[i]<0)a[i]+=n;
if(i+a[i]>=n)a[i]-=n;
++ind[i+a[i]];
}
for(int i=0;i<n;++i)
if(ind[i]>1){puts("NO");goto GG;}
puts("YES");
GG:;
memset(ind,0,sizeof(ind));
}
return 0;
}