label识别text中的网址链接并做链接效果的展示,如下图

本文介绍了如何在iOS应用中使用正则表达式识别URL,并通过自定义扩展UILabel的方法实现链接文本的高亮显示。通过创建一个类别UILabel+LinkUrl,实现了setTextWithLinkAttribute方法,将文本中的URL转换为可点击的链接,同时设置蓝色字体颜色。
摘要由CSDN通过智能技术生成

识别URL的正则表达式:

((http[s]{0,1}|ftp)://[a-zA-Z0-9\\.\\-]+\\.([a-zA-Z]{2,4})(:\\d+)?(/[a-zA-Z0-9\\.\\-~!@#$%^&*+?:_/=<>]*)?)|(www.[a-zA-Z0-9\\.\\-]+\\.([a-zA-Z]{2,4})(:\\d+)?(/[a-zA-Z0-9\\.\\-~!@#$%^&*+?:_/=<>]*)?)

可以通过分类的方式给label添加个分类, 为label新增个分类方法:

.h文件

#import <UIKit/UIKit.h>


@interface UILabel (LinkUrl)

- (void)setTextWithLinkAttribute:(NSString *)text;

@end


.m文件

#import "UILabel+LinkUrl.h"


@implementation UILabel (LinkUrl)

- (void)setTextWithLinkAttribute:(NSString *)text {

    self.attributedText = [self subStr:text];

}


-(NSMutableAttributedString*)subStr:(NSString *)string

{

    NSError *error;

    //可以识别<

首先,我们需要安装必要的库,包括`torch`、`torchvision`和`matplotlib`。可以在终端或命令提示符下输入以下命令进行安装: ``` pip install torch torchvision matplotlib ``` 然后,我们可以按照以下步骤创建一个简单的识别界面: 1. 导入必要的库 ```python import torch import torchvision import matplotlib.pyplot as plt import numpy as np ``` 2. 加载模型 ```python model = torch.load('model.pth') model.eval() ``` 3. 定义标签 ```python labels = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] ``` 4. 定义预处理函数 ```python transform = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) ``` 5. 定义识别函数 ```python def predict(image_path): image = plt.imread(image_path) image = transform(image) image = image.unsqueeze(0) output = model(image) _, predicted = torch.max(output.data, 1) return labels[predicted.item()] ``` 6. 创建GUI界面 ```python from tkinter import * from tkinter import filedialog root = Tk() root.title('识别界面') def open_file(): file_path = filedialog.askopenfilename() label.config(text='正在识别...') result = predict(file_path) label.config(text=f'这是一张 {result} 片') button = Button(root, text='选择片', command=open_file) button.pack() label = Label(root, text='请点击按钮选择一张片') label.pack() root.mainloop() ``` 这样,一个简单的识别界面就完成了。在运行程序之前,需要将`model.pth`替换为你自己的模型文件路径。运行程序后,点击“选择片”按钮,选择一张片,程序将自动识别的物体,并在界面上显示结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值