题目描述
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个位置。
输入: [2,3,1,1,4] 输出: true
解释: 我们可以先跳 1 步,从位置 0 到达 位置 1, 然后再从位置 1 跳 3 步到达最后一个位置。
输入: [3,2,1,0,4] 输出: false
解释: 无论怎样,你总会到达索引为 3 的位置。但该位置的最大跳跃长度是 0 , 所以你永远不可能到达最后一个位置。
输入: [5,3,6,2,1,2,4,1,1,1] 输出: true
解释: 2->8->9
题目解析
思路: 按照范围查找,
一开始到达0点, 可达范围最多是5
input 5 3 6 2 1 2 4 1 1 1
index 0 1 2 3 4 5 6 7 8 9
这里的要求是要输出是否可达.
动态规划
对于第i个点, 如果之前的j点可达且从此节点能跳到本节点, 那么结果为true.
class Solution {
public boolean canJump(int[] nums) {
boolean[] dp = new boolean[nums.length];
dp[0] = true;
for (int i = 1; i < nums.length; i++) {
for (int j = 0; j < i; j++) {
if (dp[j] && nums[j] + j >= i) {
dp[i] = true;
break;
}
}
}
return dp[nums.length - 1];
}
}
贪心法
向前递推, 看当前点能否被前一个点覆盖到.
class Solution {
public boolean canJump(int[] nums) {
if (nums == null) {
return false;
}
int lastPosition = nums.length - 1;
for (int i = nums.length - 1; i >= 0; i--) {
// 逐步向前递推
if (nums[i] + i >= lastPosition) {
lastPosition = i;
}
}
return lastPosition == 0;
}
}