自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

原创 Attention Augmented Convolutional Networks

https://blog.csdn.net/wudiyouyou1994/article/details/96167188 https://blog.csdn.net/wudiyouyou1994/article/details/96167188

2020-05-30 22:48:32 17 0

转载 L1正则化引起稀疏解的多种解释

最近看知乎这个回答(李强:2019 秋招的 AI 岗位竞争激烈吗?)获得的启发,面试AI岗位的时候,比起只能画图解释l1正则可以引起稀疏性,如果能一下回答出多种解释方式(图,导数,概率论。。。),可以更惊艳面试官,所以网上搜集了下面的回答,真没想到l1正则有这么多种解释方式,被惊艳到了。所以整理了...

2020-05-28 08:39:59 15 0

转载 一文道尽softmax loss及其变种

1 softmax loss softmax loss是我们最熟悉的loss之一,在图像分类和分割任务中都被广泛使用。Softmax loss是由softmax和交叉熵(cross-entropy loss)loss组合而成,所以全称是softmax with cross-entropy los...

2020-05-27 18:22:40 116 0

转载 度量学习中损失函数的学习与深入理解

『深度概念』度量学习中损失函数的学习与深入理解 0. 概念简介 度量学习(Metric Learning),也称距离度量学习(Distance Metric Learning,DML) 属于机器学习的一种。其本质就是相似度的学习,也可以认为距离学习。因为在一定条件下,相似度和距离可以相...

2020-05-27 18:15:39 79 0

转载 损失函数改进之Large-Margin Softmax Loss

最近几年网络效果的提升除了改变网络结构外,还有一群人在研究损失层的改进,这篇博文要介绍的就是较为新颖的Large-Margin softmax loss(L-softmax loss)。Large-Margin softmax loss来自ICML2016的论文:Large-Margin Soft...

2020-05-27 16:14:33 75 0

转载 二分类、多分类与多标签问题的区别,对应损失函数的选择

二分类、多分类与多标签分类问题使用不同的激活函数和损失函数,结论见文末总结(如果你赶时间可以直接看结论,但建议有时间时回过头来看看分析更有助于理解)。 更多人工智能基础知识见 望江小车车的博客 二分类、多分类与多标签的基本概念 二分类:表示分类任务中有两个类别,比如我们想识别一幅图片是不是猫...

2020-05-27 15:22:15 45 0

转载 损失函数设计

目录 1.常见损失函数 1.1 平方损失函数 1.2 绝对值损失函数 1.3 Huber损失函数 1.4 Hinge损失函数 1.5 交叉熵损失函数 1.6 指数损失函数 2.不对称损失函数设计 3.面向容错的损失函数设计 4.评测指标不可导时的损失函数设计 5.没有“Gro...

2020-05-27 15:14:06 43 0

转载 focal loss和OHEM(on-line hard example mining)如何应用到faster RCNN中

在物体检测问题中,主要分为两类检测器模型:one stage detector(SSD,YOLO系列,retinanet)和two stage detector(faster RCNN系列及其改进模型),然而无论是一个阶段的检测器还是两个阶段的检测器,都使用到了anchor机制,即在特征图上密集地...

2020-05-26 14:17:13 115 0

转载 BN(Batch Normalization)算法原理详解

Motivation 2015年的论文《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》阐述了BN算法,这个算法目前已经被大量应用,很多论文都会引用这个算法,...

2020-05-26 13:49:38 116 0

转载 视频行为识别检测综述 IDT TSN CNN-LSTM C3D CDC R-C3D

Video Analysis之Action Recognition(行为识别) 行为识别就是对时域预先分割好的序列判定其所属行为动作的类型,即“读懂行为”。 1 本文github地址 博文末尾支持二维码赞赏哦 _ [行为检测|论文解读]行为检测调研综述 较新 基于Deep Learning ...

2020-05-26 10:15:29 941 0

转载 [行为检测|论文解读]行为检测调研综述

计算机视觉 行为检测 视频理解 1. 背景 2. 国内外研究现状 3. 行为分类 3.1 研究难点 3.2 数据集介绍 3.3 传统方法 3.3.1 密集采样特征点 3.3.2 轨迹与轨迹描述子 3.3.3 运动描述子 3.4 TWO STREAM方法 3.4.1 TWO-STREAM CNN ...

2020-05-26 10:12:48 345 0

转载 L1、L2、smooth L1三类损失函数

一、常见的MSE、MAE损失函数 1.1 均方误差、平方损失 均方误差(MSE)是回归损失函数中最常用的误差,它是预测值与目标值之间差值的平方和,其公式如下所示: 下图是均方根误差值的曲线分布,其中最小值为预测值为目标值的位置。 优点:各点都连续光滑,方便求导,具有较为稳定的解 缺点:不是特别...

2020-05-20 11:55:35 201 0

转载 pooling作用

作者:言有三 链接:https://www.zhihu.com/question/36686900/answer/476117375 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 (1) 增大感受野 所谓感受野,即一个像素对应回原图的区域大小,假如没有po...

2020-05-18 17:24:47 34 0

转载 详解机器学习中的梯度消失、爆炸原因及其解决方法

前言 本文主要深入介绍深度学习中的梯度消失和梯度爆炸的问题以及解决方案。本文分为三部分,第一部分主要直观的介绍深度学习中为什么使用梯度更新,第二部分主要介绍深度学习中梯度消失及爆炸的原因,第三部分对提出梯度消失及爆炸的解决方案。有基础的同鞋可以跳着阅读。 其中,梯度消失爆炸的解决方案主要包括以下几...

2020-05-18 16:48:19 254 0

转载 谈谈激活函数以零为中心的问题

今天在讨论神经网络中的激活函数时,陆同学提出 Sigmoid 函数的输出不是以零为中心的(non-zero-centered),这会导致神经网络收敛较慢。关于这一点,过去我只是将其记下,却并未理解背后的原因。此篇谈谈背后的原因。 神经元 图片来自:https://zhuanlan.z...

2020-05-18 16:32:15 74 0

转载 神经网络梯度消失和梯度爆炸及解决办法

一、神经网络梯度消失与梯度爆炸 (1)简介梯度消失与梯度爆炸 层数比较多的神经网络模型在训练的时候会出现梯度消失(gradient vanishing problem)和梯度爆炸(gradient exploding problem)问题。梯度消失问题和梯度爆炸问题一般会随着网络层数的增加...

2020-05-18 16:27:50 535 0

转载 残差网络的理解

网络深度是影响深度卷积神经网络性能的一大因素,但是研究者发现当网络不断加深时,训练的结果并不好。这不是因为过拟合,因为过拟合的话应该是训练集上结果好,测试集不好,但深度网络出现的现象是训练集上的效果就不好。而且这种现象还会随着深度加深而变差。这并不符合逻辑,因为深层网络在训练时,可以是在浅层网络的...

2020-05-18 10:37:19 241 0

转载 激活函数及其各自的优缺点

1.什么是激活函数? 所谓激活函数(Activation Function),就是在人工神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端。 激活函数对于人工神经网络模型去学习、理解非常复杂和非线性的函数来说具有十分重要的作用。它们将非线性特性引入到我们的网络中。如图,在神经元中,输...

2020-05-18 10:29:52 540 0

转载 ROC曲线理解

本文用于理解ROC曲线的定义,绘制过程及其应用实现,主要用于自我温习回顾基础 基本目录如下: 什么是ROC曲线? 1.1 ROC曲线的历史 1.2 ROC曲线的定义 1.3 ROC曲线的应用场景 如何绘制ROC曲线? 2.1 ROC曲线的绘制原理 2.2 ROC曲线绘制...

2020-05-18 10:22:08 157 0

转载 Batch-normalization与Layer-normalization

参考<优化策略-2>深度学习加速器Layer Normalization-LN 及你是怎样看待刚刚出炉的 Layer Normalisation 的? batch是“竖”着来的,各个维度做归一化,所以与batch size有关系。 layer是“横”着来的,对一个样本,不同的神经...

2020-05-16 15:09:16 39 0

原创 优化方法总结:SGD,Momentum,AdaGrad,RMSProp,Adam

https://blog.csdn.net/u010089444/article/details/76725843 https://www.cnblogs.com/guoyaohua/p/8542554.html

2020-05-16 14:53:32 49 0

转载 Batch Normalization

https://aiplusall.com/article/213144b40e9f74ee

2020-05-16 14:41:27 38 0

转载 二分类和多分类问题的评价指标总结

1 二分类评价指标 准确率,精确率,召回率,F1-Score, AUC, ROC, P-R曲线 1.1 准确率(Accuracy) 评价分类问题的性能指标一般是分类准确率,即对于给定的数据,分类正确的样本数占总样本数的比例。 注意:准确率这一指标在Unbalanced数据集上的表现很差,因为如果...

2020-05-14 20:58:54 602 0

转载 史上最易懂AP、mAP计算解析

博主最近也有在接触目标检测相关的相关研究,其中有一个环节博主卡了很久,那就是AP的计算过程。相信大家都看到过很多关于AP的介绍,但是都很空泛,而且大家的答案都是千篇一律,我们只能看个大概,但是一到看代码或者是要自己写代码的时候具体怎么操作就不会了。博主在学习的时候看到一篇英文的关于AP的介绍十分的...

2020-05-13 21:48:14 116 0

转载 Python面试题之生成器/迭代器

1.为什么要有生成器? 通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。所以,如果列表元素可以按照某种算法推算出来,那我...

2020-05-13 08:18:02 53 0

转载 Python中*args和**kwargs的区别

(注:本文部分内容摘自互联网,由于作者水平有限,不足之处,还望留言指正。) 中秋的夜,微凉,但却始终看不见月亮。 我想,它一定是害羞了,悄悄的躲到了乌云的后面。 嗯,就是这样,我真是太TM机智了。 正文: 注:《python核心编程第2版》的11.6可变长度的参数---章节中有详细...

2020-05-13 08:14:56 24 0

转载 搞懂Python切片操作

写在前面: 利用python解决问题的过程中,经常会遇到从某个对象中抽取部分值的情况。“切片”操作正是专门用于实现这一目标的有力武器。理论上,只要条件表达式得当,可以通过单次或多次切片操作实现任意目标值切取。切片操作的基本语法比较简单,但如果不彻底搞清楚内在逻辑,也极容易产生错误,而且这种错误有...

2020-05-12 11:23:41 50 0

转载 Python 直接赋值、浅拷贝和深度拷贝解析

直接赋值:其实就是对象的引用(别名)。 浅拷贝(copy):拷贝父对象,不会拷贝对象的内部的子对象。 深拷贝(deepcopy):copy 模块的 deepcopy 方法,完全拷贝了父对象及其子对象。 字典浅拷贝实例 实例 >>>a = {1: [1,...

2020-05-12 11:09:08 30 0

转载 C语言实现七大查找算法

https://liufan.vip/%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84/2019-4-3-%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84%E4%B9%8B%E6%9F%A5%E6%89%BE/ https://roseou.git...

2020-05-12 08:43:22 54 0

转载 20道必须掌握的C++面试题

在面试C++方面的工作时,经常会遇到各种面试题,这对应聘人员的知识掌握能力要求较高。本文将为大家带来的就是20道必须掌握的C++面试题,不要错过哦! 想要快速轻松掌握C++知识,请点击C++微课边学习边实践 问1:请用简单的语言告诉我C++ 是什么? 答:C++是在C语言的基础上开发...

2020-05-12 08:39:45 58 0

转载 一文搞懂TCP与UDP的区别

转载:https://www.cnblogs.com/fundebug/p/differences-of-tcp-and-udp.html

2020-05-11 14:05:19 170 0

转载 Static与Const的区别

static static局部变量 将一个变量声明为函数的局部变量,那么这个局部变量在函数执行完成之后不会被释放,而是继续保留在内存中 static 全局变量 表示一个变量在当前文件的全局内可访问 static 函数 表示一个函数只能在当前文件中被访问 static 类成员变量 表示这个成...

2020-05-11 11:24:43 48 0

转载 C++ 虚函数、纯虚函数

转载:https://zhuanlan.zhihu.com/p/37331092 初步印象 多态(polymorphism)是面向对象编程语言的一大特点,而虚函数是实现多态的机制。其核心理念就是通过基类访问派生类定义的函数。多态性使得程序调用的函数是在运行时动态确定的,而不是在编译时静态确定的...

2020-05-11 10:07:50 51 0

转载 Caffe学习(四)数据层及参数设置

caffe的各种数据层在caffe.proto文件中有定义。通过对定义的caffe.proto文件进行编译,产生支持各种层操作的c++代码。后面将会详细解读caffe.proto文件(在caffe里就是当做一个自动代码生成工具来用)。本文主要介绍caffe可以读入数据的各种格式,方便后面采用caf...

2018-05-30 22:42:07 529 0

转载 FastRCNN 训练自己数据集(二)——修改读写接口

这里楼主讲解了如何修改Fast RCNN训练自己的数据集,首先请确保你已经安装好了Fast RCNN的环境,具体的编配编制操作请参考我的上一篇文章。首先可以看到fast rcnn的工程目录下有个Lib目录这里下面存在3个目录分别是:datasetsfast_rcnnroi_data_layerut...

2018-05-23 22:26:27 581 0

转载 Python神图

偶尔从别的地方看来的,只有一张图,感觉还是不错的,讲的还是挺全的,python初学者可以看看

2018-05-23 22:18:02 399 0

转载 什么是hard negative mining

最近一直在看关于CNN的目标检测和跟踪的文章,在这中间会经常看到hard negative mining这个名词,把这个大概解释一下:假设给你一堆包含一个或多个人物的图片,并且每一个人都给你一个bounding box做标记,如果要训练一个分类器去做分类的话,你的分类器需要既包含正训练样本(人)和...

2018-05-23 22:15:55 490 0

转载 Faster R-CNN 深入理解 && 改进方法汇总

Faster R-CNN 从2015年底至今已经有接近两年了,但依旧还是Object Detection领域的主流框架之一,虽然推出了后续 R-FCN,Mask R-CNN 等改进框架,但基本结构变化不大。同时不乏有SSD,YOLO等骨骼清奇的新作,但精度上依然以Faster R-CNN为最好。对...

2018-05-23 22:13:55 454 0

转载 Faster rcnn相关文章研究

一、效果简介1  多类目标检测,基于VOC2012数据集    MAC :The number of adds andmultiplications    mAP:Mean average precision    GPU:NVIDIA Titan X  我们目前的...

2018-05-23 22:12:28 151 0

转载 计算机视觉识别简史:从 AlexNet、ResNet 到 Mask RCNN

最近,物体识别已经成为计算机视觉和 AI 最令人激动的领域之一。即时地识别出场景中所有的物体的能力似乎已经不再是秘密。随着卷积神经网络架构的发展,以及大型训练数据集和高级计算技术的支持,计算机现在可以在某些特定设置(例如人脸识别)的任务中超越人类的识别能力。我感觉每...

2018-05-23 22:09:56 169 0

提示
确定要删除当前文章?
取消 删除