- 博客(421)
- 资源 (1)
- 收藏
- 关注
原创 VUE.JS NPM LINUX系统中VUE项目无法在后台长期运行(即NOHUP无法将VUE项目进程转为守护进程)的解决方法
vue.js npm Linux系统中Vue项目无法在后台长期运行(即nohup无法将vue项目进程转为守护进程)的解决方法 - 夸智网
2024-02-28 18:21:33 211 1
转载 绝对不容错过:最完整的检测模型评估指标mAP计算指南(附代码)在这里!
https://mp.weixin.qq.com/s?__biz=MzU0NjgzMDIxMQ==&mid=2247571270&idx=4&sn=308668d50b8d9afadd0af44352019ecb&chksm=fb5435aacc23bcbc932303458a5cc65ca285eec31ecd3a0a7387678577965391a9011e5578e7&scene=27
2023-03-02 20:10:42 411 1
转载 这么多年,终于有人讲清楚Transformer了
作者 | Jay Alammar译者 | 香槟超新星,责编 | 夕颜来源 | CSDN(ID:CSDNnews)注意力机制是一种在现代深度学习模型中无处不在的方法,它有助于提高神经机器翻译应用程序性能的概念。在本文中,我们将介绍Transformer这种模型,它可以通过注意力机制来提高训练模型的速度。在特定任务中,Transformer的表现优于Google神经机器翻译模型。但是,最大的好处来自于Transformer如何适用于并行化。实际上,Google Cloud建议使用Transforme
2022-05-29 08:23:01 731
转载 浅析tornado web框架
1、tornado概述Tornado就是我们在 FriendFeed 的 Web 服务器及其常用工具的开源版本。Tornado 和现在的主流 Web 服务器框架(包括大多数 Python 的框架)有着明显的区别:它是非阻塞式服务器,而且速度相当快。得利于其 非阻塞的方式和对epoll的运用,Tornado 每秒可以处理数以千计的连接,因此 Tornado 是实时 Web 服务的一个 理想框架。我们开发这个 Web 服务器的主要目的就是为了处理 FriendFeed 的实时功能 ——在 FriendFee
2021-11-01 10:44:27 575
转载 (EM算法)The EM Algorithm
EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法。在之后的MT中的词对齐中也用到了。在Mitchell的书中也提到EM可以用于贝叶斯网络中。下面主要介绍EM的整个推导过程。1. Jensen不等式 回顾优化理论中的一些概念。设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数。当x是向量时,如果其hessian矩阵H是半正定的(),那么f是凸函数。如果或者,那么称f是严格凸函数。 Jense...
2021-07-27 19:41:49 305
转载 (EM算法)The EM Algorithm
EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法。在之后的MT中的词对齐中也用到了。在Mitchell的书中也提到EM可以用于贝叶斯网络中。下面主要介绍EM的整个推导过程。1. Jensen不等式 回顾优化理论中的一些概念。设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数。当x是向量时,如果其hessian矩阵H是半正定的(),那么f是凸函数。如果或者,那么称f是严格凸函数。 Jense...
2021-07-27 19:37:57 177
转载 机器学习中精确率(precision)、召回率(recall)和准确率(accuracy)的理解
注:网上很多讲解都瞎讲,把precision和accuracy概念混淆,误人子弟。1.精确率(precision)就precision而言有很多版本,各种说法不一,有精确率也有正确率更有甚者把准确率也搞出来了实在受不了,反正咱们看英文precision。 precision是表示预测为正样本中,被实际为正样本的比例。可以看出precision是考虑的正样本被预测正确的比例.根据图1-1可得其计算公式为:P = TP / (TP + FP)2.召回率(recall) ...
2021-06-10 14:18:51 17108 5
转载 Git diff
Git diff 用于比较两次修改的差异 1.1 比较工作区与暂存区 git diff不加参数即默认比较工作区与暂存区 1.2 比较暂存区与最新本地版本库(本地库中最近一次commit的内容) git diff --cached [<path>...] 1.3 比较工作区与最新本地版本库 git diff HEAD[<path>...] 如果HEAD指向的是master分支,那么HEAD还可...
2021-04-17 10:52:06 235
原创 编码解码
常见的几种编码方式https://blog.csdn.net/byf0521hlyp/article/details/80365045开发者最喜爱的图片编码格式:opencv编码,解码,显示base64图片https://zhuanlan.zhihu.com/p/270590321
2021-04-17 10:19:42 226
转载 关于协方差矩阵的概念及意义
在做幻觉脸时用PCA,好不容易搞明白了原理,却发现溜掉了为什么计算协方差矩阵前要去均值(其实很简单,不要笑我脑残哈),和同学讨论啊讨论啊,讨论结果只是证明了我们把曾经学过的概率之类的忘的不胜什么了,所有就问了一下Google,很幸运找到了一位很敬业的小伙写的文章,贴出来警示一下自己要有人家这种钻研的精神!源地址:http://www.pinkyway.info/2010/08/31/covariance/今天看论文的时候又看到了协方差矩阵这个破东西,以前看模式分类的时候就特困扰,没想到现在还是.
2021-03-28 20:57:34 1616
转载 SIFT特征匹配算法介绍——寻找图像特征点的原理
1.图像尺度空间在了解图像特征匹配前,需要清楚,两张照片之所以能匹配得上,是因为其特征点的相似度较高。而寻找图像特征点,我们要先知道一个概念,就是“图像尺度空间”。平时生活中,用人眼去看一张照片时,随着观测距离的增加,图像会逐渐变得模糊。那么计算机在“看”一张照片时,会从不同的“尺度”去观测照片,尺度越大,图像越模糊。那么这里的“尺度”就是二维高斯函数当中的σ值,一张照片与二维高斯函数卷积后得到很多张不同σ值的高斯图像,这就好比你用人眼从不同距离去观测那张照片。所有不同尺度下的图像,构成单.
2021-03-22 12:14:26 1319
转载 尺度不变特征变换(SIFT)匹配算法详解
尺度不变特征变换匹配算法详解ScaleInvariantFeatureTransform(SIFT)JustForFunzdd zddmail@gmail.comor (zddhub@gmail.com)对于初学者,从DavidG.Lowe的论文到实现,有许多鸿沟,本文帮你跨越。如果你学习SIFI得目的是为了做检索,也许OpenSSE更适合你,欢迎使用。1、SIFT综述尺度不变特征转换(Scale-invariantfeaturetransform或SIFT)是一种...
2021-03-22 12:08:35 2429
转载 sift、surf、orb 特征提取及最优特征点匹配
目录sift sift特征简介 sift特征提取步骤 surf surf特征简介 surf特征提取步骤 orb orb特征简介 orb特征提取算法 代码实现 特征提取 特征匹配 总结 附录siftsift特征简介SIFT(Scale-Invariant Feature Transform)特征,即尺度不变特征变换,是一种计算机视觉的特征提取算法,用来侦测与描述图像中的局部性特征。实质上,它是在不同的尺度空间上查找关键点(特征点),并.
2021-03-22 10:53:39 6097 1
转载 HOG特征以及提取算法的实现过程
1、HOG特征:方向梯度直方图(HistogramofOrientedGradient,HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主。(1)主要思想:.
2021-03-19 09:26:59 1407
转载 RPC、HTTP、RESTful
RESTfulRESTFUL是一种网络应用程序的设计风格和开发方式,基于HTTP,可以使用XML格式定义或JSON格式定义。RESTFUL适用于移动互联网厂商作为业务使能接口的场景,实现第三方OTT调用移动网络资源的功能,动作类型为新增、变更、删除所调用资源。https://baike.baidu.com/item/RESTful/4406165?fr=aladdinHTTPhttp是一个简单的请求-响应协议,它通常运行在TCP之上。它指定了客户端可能发送给服务器什么样的消息以及得到什么样.
2021-03-14 22:37:02 229
转载 Thrift
什么是ThriftProtobuf是一个语言中立、平台中立,对结构化数据进行序列化的可扩展机制。我们在开发的时候开发了一个restful web service,就是基于rest的http调用,A系统作为客户端,B系统作为服务器端。A系统可以通过URL的方式携带一些数据去调用B所提供的接口然后返回相应的结果数据。这种方式我们也可以认为是RPC的一种实现方式。对于这种方式我们可以认为是平台独立的、语言独立的,也就是语言中立、平台中立。也就是我们可以用Python编写的客户端去调用Java编写的服务端,
2021-03-14 18:29:50 213
转载 有了HTTP,为什么还要RPC?
有了HTTP,为什么还要RPC?RPC:Remote Procedure Call,远程过程调用一直以来都没有深究过RPC和HTTP的区别,不都是写一个服务然后在客户端调用么?HTTP和RPC最本质的区别,就是 RPC 主要是基于 TCP/IP 协议的,而 HTTP 服务主要是基于 HTTP 协议的。我们都知道 HTTP 协议是在传输层协议 TCP 之上的,所以效率来看的话,RPC 当然是要更胜一筹啦!HTTP和RPC的相同点是,底层通讯都是基于socket,都可以实现远程调用.
2021-03-14 18:28:55 353
转载 python 一个.py文件如何调用另一个.py文件中的类和函数
在同一个文件夹下调用函数:A.py文件:def add(x,y): print('和为:%d'%(x+y))B.py文件:import AA.add(1,2)或from A import addadd(1,2)调用类:A.py文件:class A: def __init__(self,xx,yy): self.x=xx self.y=yy def add(self): print("x和y的和为:%d"...
2021-03-04 16:35:57 3951 1
转载 十分钟带你理解Kubernetes核心概念
十分钟带你理解Kubernetes核心概念本文将会简单介绍Kubernetes的核心概念。因为这些定义可以在Kubernetes的文档中找到,所以文章也会避免用大段的枯燥的文字介绍。相反,我们会使用一些图表(其中一些是动画)和示例来解释这些概念。我们发现一些概念(比如Service)如果没有图表的辅助就很难全面地理解。在合适的地方我们也会提供Kubernetes文档的链接以便读者深入学习。如果你想和我或者更多Kubernetes专家交流,可以加我微信liyingjiese,备注『加群』。群里每周都有全球
2021-03-03 14:35:12 199 1
原创 谁能用通俗的语言解释一下什么是 RPC 框架和SOA??
https://www.zhihu.com/question/25536695https://www.zhihu.com/question/42061683
2021-02-28 18:29:09 130
转载 pytorch预训练
Pytorch预训练模型以及修改pytorch中自带几种常用的深度学习网络预训练模型,torchvision.models包中包含alexnet、densenet、inception、resnet、squeezenet、vgg等常用网络结构,并且提供了预训练模型,可通过调用来读取网络结构和预训练模型(模型参数)。往往为了加快学习进度,训练的初期直接加载pretrain模型中预先训练好的参数。加载model如下所示:import torchvision.models as models1.加载网络
2021-02-18 10:03:43 620
转载 如何一步一步提高图像分类准确率?
一、问题描述当我们在处理图像识别或者图像分类或者其他机器学习任务的时候,我们总是迷茫于做出哪些改进能够提升模型的性能(识别率、分类准确率)。。。或者说我们在漫长而苦恼的调参过程中到底调的是哪些参数。。。所以,我花了一部分时间在公开数据集CIFAR-10 [1] 上进行探索,来总结出一套方法能够快速高效并且有目的性地进行网络训练和参数调整。CIFAR-10数据集有60000张图片,每张图片均为分辨率为32*32的彩色图片(分为RGB3个信道)。CIFAR-10的分类任务是将每张图片分成青蛙、卡车、飞机
2021-02-09 10:52:26 2327
转载 Pytorch 模型的加载与保存
pytorch的模型和参数是分开的,可以分别保存或加载模型和参数。1、直接保存模型# 保存模型torch.save(model, 'model.pth')# 加载模型model = torch.load('model.pth')2、分别加载模型的结构和参数# 保存模型参数torch.save(model.state_dict(), 'model.pth')# 加载模型参数model.load_state_dict(torch.load('model.pth')CPU模
2021-01-21 11:50:15 655
转载 Maven学习笔记之第一个Maven项目(Linux)
Maven是Apache旗下的管理Java项目jar包的项目管理工具,有了它可以很方便构建和管理我们的Java项目,你不必在互联网上逐个查找你需要的第三方jar包,你只需在maven repository(https://mvnrepository.com/)上搜索就可以了,包括所有的版本。下面记录学习过程的第一个Maven项目,在学习之前需要配置JDK和Maven的环境变量,具体需要查找资料搭建,不难。注意:JDK版本需要1.7及以上,Maven的官网下载也有说明(requirement)。如果在终端输入
2021-01-20 10:46:43 272
转载 gRPC详解
gRPC是什么?gRPC是什么可以用官网的一句话来概括A high-performance, open-source universal RPC framework所谓RPC(remote procedure call 远程过程调用)框架实际是提供了一套机制,使得应用程序之间可以进行通信,而且也遵从server/client模型。使用的时候客户端调用server端提供的接口就像是调用本地的函数一样。如下图所示就是一个典型的RPC结构图。RPC通信gRPC有什么好处以及在什么场景下
2021-01-05 11:51:47 522 1
转载 Pytorch图像分类从模型自定义到测试
前面已跟大家介绍了 Caffe 和 TensorFlow,现在说说 Pytorch,集齐三大主流框架以后方便召唤模型。1 什么是 Pytorch一句话总结 Pytorch = Python + Torch。Torch 是纽约大学的一个机器学习开源框架,几年前在学术界非常流行,包括 Lecun 等大佬都在使用。但是由于使用的是一种绝大部分人绝对没有听过的 Lua 语言,导致很多人都被吓退。后来随着 Python 的生态越来越完善,Facebook 人工智能研究院推出了 Pytorch 并开源。Py
2020-12-30 15:24:21 415
转载 pytorch 状态字典:state_dict使用详解
pytorch 中的 state_dict 是一个简单的python的字典对象,将每一层与它的对应参数建立映射关系.(如model的每一层的weights及偏置等等)(注意,只有那些参数可以训练的layer才会被保存到模型的state_dict中,如卷积层,线性层等等)优化器对象Optimizer也有一个state_dict,它包含了优化器的状态以及被使用的超参数(如lr, momentum,weight_decay等)备注:1) state_dict是在定义了model或optimizer
2020-12-30 14:58:35 14140
转载 PyTorch实现的ResNet50、ResNet101和ResNet152
PyTorch实现的ResNet50、ResNet101和ResNet152PyTorch:https://github.com/shanglianlm0525/PyTorch-Networksimport torchimport torch.nn as nnimport torchvisionimport numpy as npprint("PyTorch Version: ",torch.__version__)print("Torchvision Version: ",torch.
2020-12-30 14:42:02 665
转载 torch.max()使用讲解
在分类问题中,通常需要使用max()函数对softmax函数的输出值进行操作,求出预测值索引。下面讲解一下torch.max()函数的输入及输出值都是什么。1. torch.max(input, dim) 函数output = torch.max(input, dim)输入input是softmax函数输出的一个tensor dim是max函数索引的维度0/1,0是每列的最大值,1是每行的最大值输出函数会返回两个tensor,第一个tensor是每行的最大值,softmax的
2020-12-30 14:38:15 1145
转载 kafka
kafka 名字背后的故事说到卡夫卡,不知道你脑海中第一个想到的是什么?是《变形记》的作者弗兰兹·卡夫卡(Franz Kafka)?还是村上春树的《海边的卡夫卡》?不知道为何,我脑海中浮现的第一个竟然是契诃夫的《装在套子里的人》。后来去查了一下,主角是别里科夫,大概是自己的记忆产生了混乱。在开始正式的介绍之前,我们先来学习一下,卡夫卡这个词是什么意思。卡夫卡在捷克语中是【寒鸦】的意思,而卡夫卡在希伯来语中是【穴鸟】的意思。那么我们今天的主角 apache kafka 和 我们提到的
2020-12-16 14:40:48 317
转载 联合概率、边缘概率、条件概率之间的关系&贝叶斯公式
前言有挺长一段时间没有更新博客了,一方面是学校期末考试,后来又看了一些很基础的编程数学思想的东西(《程序员的数学》第一卷),大多数东西都在之前的学习和使用中都有注意到,所以没有什么特别值得更新的。这次看到了卷2《程序员的数学2——概率统计》发现之前在概率论的学习过程中,忽略了一些比较重要的东西,这边就来记录一下,如果有写的不对和写得不好的地方,请各位看官老爷帮忙指出~正文这次主要介绍的是多个随机变量之间的关系,主要涉及联合概率,边缘概率,条件概率这三种关系,还有一个利用他们之间关系导出的非常重要
2020-12-10 10:27:15 3328
转载 P问题、NP问题、NP完全问题和NP难问题
在讲P类问题之前先介绍两个个概念:多项式,时间复杂度。(知道这两概念的可以自动跳过这部分)1、多项式:axn-bxn-1+c恩....就是长这个样子的,叫x最高次为n的多项式....咳咳,别嫌我啰嗦。。有些人说不定还真忘了啥是多项式了。。例如第一次看到的鄙人→_→2、时间复杂度我们知道在计算机算法求解问题当中,经常用时间复杂度和空间复杂度来表示一个算法的运行效率。空间复杂度表示一个算法在计算过程当中要占用的内存空间大小,这里暂不讨论。时间复杂度则表示这个算法运行得到想要的解所需的计算工作
2020-12-04 10:30:23 315
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人