度量学习

本次我们介绍一篇来自新加坡南洋理工大学(NTU)的一篇发表在计算机视觉顶会CVPR 2015的文章:Deep Transfer Metric Learning。从题目上就能看出,文章是关于三个方面的:deep learning, transfer learning, 以及metric learning。前两个我们都已经非常熟悉,第三个metric learning是什么?我们将首先介绍metric learning的背景知识,然后进入主题,解读文章。

背景: Metric Learning

在机器学习中,关于度量的学习,一直以来是一个重要的研究方向。如何度量两个样本之间的距离,看似是一个简单的问题,实则关乎到几乎所有的分类、回归、聚类等基本任务的表现。好的度量有助于我们发现更好的特征,构建更好的模型。什么是度量?英文名叫做Metric,就是距离的意思。我们常用的欧氏距离、马氏距离、余弦相似度等,都可以叫做度量。这些度量是显式的,是不需要学习直接就可以计算出来的。但是,在特定的任务中,单纯地运用这些简单的距离公式,往往达不到我们预期的效果。此时,一种对于度量的研究就可以帮助我们对这些距离进行学习。此时,这个距离则是隐式的。这就是所谓的度量学习 (Metric Learning)

度量学习的基本思路是,给定一些训练样本,这些样本中包含了我们预先观测到的一些对于样本的知识(先验),例如,哪两个样本的距离应该要近一些,哪两个要远一些。然后,我们的学习算法就可以以这些先验知识为约束条件,构建目标函数,学习到这些样本之间的一个很好的度量,并满足我们预先给定的限制条件。从这个意义上看,度量学习就是一种特定条件下的优化问题。

度量学习的发展也和机器学习的发展情况大概一致,从最初的基于传统方法,逐渐过渡到如今的基于深度神经网络。度量学习在计算机视觉、视频分析、文本挖掘、生物信息学等多个领域均有着广泛的应用。可以说,在机器学习中,没有度量,就没有好的模型。凡是需要用到机器学习的地方,都需要度量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值