- 博客(5)
- 收藏
- 关注
转载 Yolo中epoch、batch、batchsize的含义
在没有使用Batch Size之前,这意味着网络在训练时,是一次把所有的数据(整个数据库)输入网络中,然后计算它们的梯度进行反向传播,由于在计算梯度时使用了整个数据库,所以计算得到的梯度方向更为准确。在YOLOv5中,每个epoch的训练过程中,模型会遍历数据集中的每个批次(batch)数据,并根据损失函数计算预测值与真实标签之间的差异,然后通过反向传播算法来调整模型的参数,以使得模型在下一次遍历数据集时能够更好地预测猴猕猴桃。就是Batch Size=1,每次计算一个样本,梯度不准确,所以学习率要降低。
2023-07-20 14:55:02
6220
2
原创 将yolov5导入到PyCharm中并训练自己的数据
在创建完虚拟环境、下载好git文件之后,打开pycharm,导入项目选择git存储的文件夹——重点来了!选择配置解释器的时候,conda——现有解释器!”——在次目录中打开。利用labelimg进行数据标注,在没有修改模型参数的条件下对数量很少的训练集和验证集进行模型训练,导出自己的模型之后在测试集上测试模型效果,结果并不理想。在不久之后,有了足够多的图片数据,不可避免地要加大力度训练自己的模型,那个时候最好可以利用实验室的服务器,所以要给自己搭载一个服务器字段,从而可以远程训练模型、提高训练速度与效率。
2023-07-20 14:35:15
778
原创 Yolo-v5安装运行过程中遇到的问题
python中对thop安装时出现:This error originates from a subprocess, and is likely not a problem with pip.
2023-04-04 17:40:09
652
2
原创 使用改进的YOLO-V4网络实时检测水产养殖水下图像中未吃完的饲料颗粒
科技论文Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network精读与思考,结合论文做了一些知识扩展。
2022-11-24 23:52:00
1093
4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人