HDU 1198简单并查集

简单题,重点在于预处理的时候保证准确无误(不细心导致WA两次= =)。
思路如下:
对所有类型地图预处理,将其东西南北的走势保存在数组中,而后从上到下、从左到右依次遍历每一个点:
1.当左边的点与当前点相连时,将左边点最顶端的父亲指向当前的点。
2.当上边的点与当前点相连时,将上边点最顶端的父亲指向当前的点。
遍历完后即可得出答案~

以下为代码实现:

#include <iostream>
#include <cstdio>
#include <memory.h>
#define IN freopen("in.txt", "r", stdin)
#define N 50
using namespace std;
struct field{
    int n;    //南
    int w;    //北
    int e;    //东
    int s;    //西
};
int m,n,father[N*N];
char mapa[N][N];
field farm[11];
int Find(int r)
{
    int i,temp=r;
    while(r!=father[r])
        r=father[r];
    while(temp!=r)
    {
        i=father[temp];
        father[temp]=r;
        temp=i;
    }
    return r;
}

int main()
{
    IN;
    memset(farm,0,sizeof(field)*11);
    farm[0].n=farm[1].n=farm[4].n=farm[6].n=farm[7].n=farm[9].n=farm[10].n=1;   //北标记
    farm[2].s=farm[3].s=farm[4].s=farm[7].s=farm[8].s=farm[9].s=farm[10].s=1;  //南标记
    farm[1].e=farm[3].e=farm[5].e=farm[6].e=farm[8].e=farm[9].e=farm[10].e=1;   //东标记
    farm[0].w=farm[2].w=farm[5].w=farm[6].w=farm[7].w=farm[8].w=farm[10].w=1;  //西标记
    while(cin>>m>>n,m!=-1&&n!=-1)
    {
        int i,j,con;
        for(i=1,j=m*n;i<=j;i++)
            father[i]=i;
        for(i=0;i<m;i++)
            cin>>mapa[i];
        for(i=0;i<m;i++)   //遍历每一个点
        for(j=0;j<n;j++)
        {
            if(j>0&&farm[mapa[i][j]-'A'].w&&farm[mapa[i][j-1]-'A'].e)  //位置合法且有通路
                father[Find(i*n+j)]=i*n+j+1;              //西边根父亲指向自己
            if(i>0&&farm[mapa[i][j]-'A'].n&&farm[mapa[i-1][j]-'A'].s)  //位置合法且有通路
                father[Find((i-1)*n+j+1)]=i*n+j+1;        //北边根父亲指向自己
        }
        for(i=1,con=0;i<=n*m;i++)
            if(i==father[i])
                con++;
        cout<<con<<endl;
    }
    return 0;
}
### HDU 3342 并查集 解题思路与实现 #### 题目背景介绍 HDU 3342 是一道涉及并查集的数据结构题目。该类问题通常用于处理动态连通性查询,即判断若干元素是否属于同一集合,并支持高效的合并操作。 #### 数据描述 给定一系列的人际关系网络中的朋友关系对 (A, B),表示 A 和 B 是直接的朋友。目标是通过这些已知的关系推断出所有人之间的间接友谊连接情况。具体来说,如果存在一条路径使得两个人可以通过中间人的链条相连,则认为他们是间接朋友。 #### 思路分析 为了高效解决此类问题,可以采用带按秩压缩启发式的加权快速联合-查找算法(Weighted Quick Union with Path Compression)。这种方法不仅能够有效地管理大规模数据集下的分组信息,而且可以在几乎常数时间内完成每次查找和联合操作[^1]。 当遇到一个新的友链 `(a,b)` 时: - 如果 a 和 b 已经在同一棵树下,则无需任何动作; - 否则,执行一次 `union` 操作来把它们所在的两棵不同的树合并成一棵更大的树; 最终目的是统计有多少个独立的“朋友圈”,也就是森林里的树木数量减一即是所需新建桥梁的数量[^4]。 #### 实现细节 以下是 Python 版本的具体实现方式: ```python class DisjointSet: def __init__(self, n): self.parent = list(range(n)) self.rank = [0] * n def find(self, p): if self.parent[p] != p: self.parent[p] = self.find(self.parent[p]) # 路径压缩 return self.parent[p] def union(self, p, q): rootP = self.find(p) rootQ = self.find(q) if rootP == rootQ: return # 按秩合并 if self.rank[rootP] > self.rank[rootQ]: self.parent[rootQ] = rootP elif self.rank[rootP] < self.rank[rootQ]: self.parent[rootP] = rootQ else: self.parent[rootQ] = rootP self.rank[rootP] += 1 def solve(): N, M = map(int, input().split()) dsu = DisjointSet(N+1) # 初始化不相交集 for _ in range(M): u, v = map(int, input().split()) dsu.union(u,v) groups = set() for i in range(1,N+1): groups.add(dsu.find(i)) bridges_needed = len(groups)-1 print(f"Bridges needed to connect all components: {bridges_needed}") solve() ``` 这段代码定义了一个名为 `DisjointSet` 的类来进行并查集的操作,包括初始化、寻找根节点以及联合两个子集的功能。最后,在主函数 `solve()` 中读取输入参数并对每一对好友调用 `dsu.union()` 方法直到遍历完所有的边为止。之后计算不同组件的数量从而得出所需的桥接次数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值