- 本文的内容整理自参考文献中的博客,并尝试加入自己的理解。
zernike相衬显微镜
相衬显微镜由荷兰物理学家、诺贝尔奖获得者Firts Zernike提出,是一种增强对比度的光学技术,可用于观测透明样品的高对比度图像,如活细胞、微生物、薄组织切片等。它的精髓可用一句话概括:利用光学机制将相位的微小变化转换为相应的幅度变化,从光学技术而言的角度来说,Zernike在相衬显微术方面的工作就是简单地利用了原来被忽略的相位信息,即把相位可视化出来了。因为透明样本虽然对光的强度没有太多的调制,但是其折射率导致光程不同,从而影响了光的相位。
如果没有这些相位信息,则零级光(黄色)和物光(红色)之间结果相位板后产生pi/2的相位差,不会产生明显干涉,而实际上样本调制了相位并导致物光和零级光之间发生干涉,从而提高样品对比度。
相衬显微镜的关键组分为:样品和相位板。其主要优点是活细胞可以在自然状态下被检查,而不需要事先被杀死、固定和染色。因此可以观察和记录正在进行的生物过程的动态。condenser为集光器/聚光器,specimen为样品。
关于这些历史可见李恒的博客。
zernike多项式和像差
图像矩
矩意为画直角或方形用的曲尺或者规矩,我个人理解为对某个对象的某种观测、度量、表示;抑或是,表示垂直的意思,因为矩的计算和函数内积(向量点乘)计算公式类似。统计中引入矩是为了描述随机变量的分布的形态(https://www.zhihu.com/question/19915565/answer/16538392)
它是一个数学概念,在概率论中最常见,也常应用于物理学中,不同阶的矩表达了不同的数学量,如图所示(https://www.zhihu.com/question/23236070/answer/786691547)。
对于任何一组点集,零阶矩表示点值之和(概率和为1/总质量/图像面积),一阶矩表示点值之和除以点的数量(期望(能不能说成均值?应该不行)/质心(穿过质心的线上的两侧质量投影相同)/重心),二阶矩可以看出随机变量平方的一阶矩,所以不直接等于方差,方差是中心化二阶矩得到的二阶中心矩(表示分布对重心的离散程度)。更高阶的矩还有偏度、峰度、超偏度、超尾度(3~6阶)。
矩反应了对象的特征,所以对于二维数据——图像来说,同样可以使用矩(Hu矩)来反映图像的特征,可用于目标识别等领域。图像的零阶矩表示图像的面积,一阶矩为混合矩幂之和为1…
zernike多项式
本质上Legendre多项式是在对一维单位球(即区间 (-1, 1))的泰勒多项式进行正交化操作,而Zernike多项式是在对二维单位球(即单位圆)的二元多项式进行正交化操作。
zerinike多项式类似于傅里叶变换,前几项集中了大部分的能量,前几项与常见的几种二维畸变面形数学形式类似,因此可以使用zernike表示光学系统中的像差,详见wikipedia。
参考文献
- https://zhuanlan.zhihu.com/p/344828125(李恒、知乎光学话题下优秀答主)
- https://zhuanlan.zhihu.com/p/474047797(daredevil、知乎博主)
- https://zhuanlan.zhihu.com/p/392294958(伊莉雅SAMA)