数据透视表和交叉表

本文介绍了如何使用Pandas库中的pivot_table()函数创建数据透视表,以及crosstab()函数进行交叉表统计,以分析销售数据和按地区、国籍等维度的汇总。通过实例演示了如何计算地区销售和利润,以及根据不同变量的频数统计.

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 数据透视表

pivot()的用途就是,将一个dataframe的记录数据整合成表格(类似Excel中的数据透视表功能)pivot_table函数可以产生类似于excel数据透视表的结果,相当的直观。其中参数index指定“行”键,columns指定“列”键。

函数形式:

pandas.pivot_table(data, values=None, index=None, columns=None, aggfunc=‘mean’, fill_value=None, margins=False, dropna=True)

】:对于DataFrame格式的某公司销售数据workdata.csv,存储在本地的数据的形式如下,请利用Python的数据透视表分析计算每个地区的销售总额和利润总额。

关键技术:pandas中透视表操作由pivot_table()函数实现,其中在所有参数中,valuesindexcolumns最为关键,它们分别对应Excel透视表中的值、行、列。程序代码如下所示:

2 .交叉表

 交叉表采用crosstab函数,可是说是透视表的一部分, 是参数aggfunc=count情况下的透视表。crosstab函数 可以按照指定的行和列统计分组频数。

函数形式:

pd.crosstab(index,columns,values=None,rownames=None,colnames=None,aggfunc=None,margins=False,margins_name:str='All',dropna: bool = True,normalize=False)

】:根据国籍和用手习惯对这段数据进行统计汇总。

     关键技术:频数统计时,使用交叉表(crosstab)更方便。传入margins=True参数(添加小计/总计),将会添加标签为ALL的行和列。

首先给出数据集:

对不同国家的用手习惯进行统计汇总:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Burrier_roust

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值