从代码角度理解凸包算法

如果三角形的某一点不在凸包上,我们以其余两点的边为底,那么我们总可以在凸包上找到一个点,使得该点到此边的高大于原来的点到此边的高,因此面积最大的三角形的三个点都在凸包上。

在凸包 convexHull 上枚举三角形,先枚举点 i,然后枚举点 j,最后枚举点 k,其中 i<j<k。

在固定点 i 和 j 后,三角形的面积与 k 的关系是一个凸曲线,因此三角形只在 k 为极点时面积最大。在固定点 i 时,该极点在随点 j 增大而增大,因此在搜索极点只需要从上次的极点位置开始搜索。

所以我们不需要枚举点 k,只需要搜索点 i 和 j 对应的极点,然后求解三角形面积。返回最大的三角形面积。

代码

Python3

C++

 

Java

 

 好了,今天的文章分享就到这里了,希望对大家的学习有帮助哦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值