一根木棒,截成三截,组成三角形的概率

我们来看这么一道经典算法题:

一根木棒,截成三截,组成三角形的概率是多少?

解题思路:

设第一段截 x,第二段截 y,第三段 1 - x - y。

考虑所有可能的截法。可能的截法中必须保证三条边都是正数且小于原来边长,则有 0 < x < 1,0 < y < 1,0 < 1 - x - y < 1。

画图可知,(x, y) 必须在单位正方形的左下角的半个直角三角形里,面积为 1 / 2。

然后考虑能形成三角形的截法。首先要满足刚才的三个条件:

0 < x < 1

0 < y < 1

0 < 1 - x - y < 1

然后必须符合三角形的边的要求,即两边之和大于第三边:

x + y > 1 - x - y

x + 1 - x - y > y

y + 1 - x - y > x

化简即得:

0 < x < 1/2

0 < y < 1/2

1/2 < x + y < 1

画图可知,此时 (x, y) 必须在边长为 1/2 的三角形的右上角的半个直角三角形里,面积为 1/8。于是最终概率为 (1/8) / (1/2) = 1/4。

今天的文章分享就到这里了,希望对大家的学习和工作有所帮助!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值