我们来看这么一道经典算法题:
一根木棒,截成三截,组成三角形的概率是多少?
解题思路:
设第一段截 x,第二段截 y,第三段 1 - x - y。
考虑所有可能的截法。可能的截法中必须保证三条边都是正数且小于原来边长,则有 0 < x < 1,0 < y < 1,0 < 1 - x - y < 1。
画图可知,(x, y) 必须在单位正方形的左下角的半个直角三角形里,面积为 1 / 2。
然后考虑能形成三角形的截法。首先要满足刚才的三个条件:
0 < x < 1
0 < y < 1
0 < 1 - x - y < 1

然后必须符合三角形的边的要求,即两边之和大于第三边:
x + y > 1 - x - y
x + 1 - x - y > y
y + 1 - x - y > x
化简即得:
0 < x < 1/2
0 < y < 1/2
1/2 < x + y < 1
画图可知,此时 (x, y) 必须在边长为 1/2 的三角形的右上角的半个直角三角形里,面积为 1/8。于是最终概率为 (1/8) / (1/2) = 1/4。
今天的文章分享就到这里了,希望对大家的学习和工作有所帮助!
 
                   
                   
                   
                   
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   1万+
					1万+
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            