- 博客(34)
- 收藏
- 关注
原创 (NIPS-2024) - GITA: Graph to Visual and Textual Integration for Vision-Language Graph Reasoning
本研究提出GITA框架,首次将视觉信息引入大语言模型处理图论任务的过程。通过Graphviz生成可视化图表,结合文本描述构建多模态输入,在GVLQA数据集上训练VLM模型。实验表明,该方法在零样本和微调场景下均显著优于纯文本LLM,验证了视觉信息对图推理的增强作用。但受限于自然语言输出形式,该方法尚无法直接生成可执行代码,且难以处理大规模图。该工作为图论任务的多模态推理提供了新思路,后续可结合代码生成能力进一步优化。
2025-10-10 16:04:32
610
原创 线性与非线性降维:PCA vs. t-SNE 原理剖析
PCA (, 主成分分析) 和 t-SNE (, t-分布随机邻域嵌入) 都是强大的降维技术;如果说上述的核心思想是这两种算法的“灵魂”,那么数学原理便是其“骨架”。本篇将详细剖析这个骨架,以此理解算法是如何被构建并运作的。
2025-10-01 12:36:58
880
原创 低光照照片拯救者:一文读懂图像增强的经典算法 Retinex
摘要: Retinex理论旨在解决计算机视觉中的颜色恒常性问题,即如何像人眼一样消除环境光影响,还原物体真实颜色。其核心模型将图像分解为反射率(物体固有属性)和光照的乘积(I = R × L)。传统算法通过高斯模糊估计光照(L),再分离反射率(R)。单尺度Retinex(SSR)简单但效果有限;多尺度Retinex(MSR)融合不同模糊尺度以平衡细节与动态范围;MSRCR进一步引入色彩恢复,避免颜色失真。尽管深度学习兴起,Retinex仍是图像增强领域的重要理论基础,广泛应用于低光照增强、去雾等场景。
2025-08-28 17:15:24
981
原创 重塑优化建模与算法设计:2025年大模型(LLM)在优化领域的应用盘点 - 2
本文总结了2025年3-4月间10篇关于大语言模型(LLM)在优化问题中应用的关键研究。这些工作展示了从可行性验证到理论深化的快速演进过程,主要聚焦于三个方向:新兴优化问题的启发式算法生成(如CEoH框架)、运筹学问题的自动化建模与求解(如OR-LLM-Agent)、以及算法设计过程的优化(如EvoTune结合强化学习)。研究显示,LLM不仅能处理经典优化问题,还能为小众问题生成高质量算法(最优解差距仅4.35%),甚至在某些任务上超越人类专家(25/36个问题表现更优)。值得注意的是,本地化部署框架解决了
2025-07-23 15:11:23
1462
原创 重塑优化建模与算法设计:2025年大模型(LLM)在优化领域的应用盘点 - 1
本文综述了2025年1-2月发表的10篇关于大语言模型(LLM)在优化问题中应用的创新研究,主要分为三类:启发式算法设计、图组合优化和自动求解器开发。
2025-07-22 21:52:40
911
原创 论文分享 - Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems
本文提出了一种基于大语言模型(LLM)的双层自演化框架LLM-LNS,用于自动设计混合整数线性规划(MILP)问题的邻域搜索策略。该框架包含内层策略进化和外层提示词进化的双层结构,通过差分记忆的定向进化机制引导优化过程。实验表明,该方法在在线装箱和旅行商等组合优化问题上优于现有方法,在200万变量的大规模集合覆盖问题上性能提升9.20%。研究创新性地将进化算法思想融入提示词工程,实现了策略的元学习进化,但部分场景下的性能提升幅度有限。
2025-07-22 18:15:16
1011
原创 重塑优化建模与算法设计:2024下半年大模型(LLM)在优化领域的应用盘点
以下,我们将按照发表时间的顺序,逐一梳理这些代表性研究的核心内容。每一篇笔记都将聚焦于论文所解决的关键问题、提出的创新方法及其取得的实验效果,从而为引言中勾勒的宏观趋势提供具体的案例支撑。
2025-07-21 13:05:22
1112
原创 重塑优化建模与算法设计:2024上半年大模型(LLM)在优化领域的应用盘点
运筹学(Operations Research)与组合优化(Combinatorial Optimization)领域面临着一道鸿沟:一边是能够解决复杂决策问题的强大数学模型与算法,另一边则是缺乏专业知识、难以将现实需求转化为形式化语言的广大业务决策者。然而,近期以大型语言模型(LLM)为代表的人工智能技术浪潮,正为自动化、平民化地解决优化问题开辟一条充满想象力的道路。每一篇笔记都将聚焦于论文所解决的关键问题、提出的创新方法及其取得的实验效果,从而为引言中勾勒的宏观趋势提供具体的案例支撑。
2025-07-20 16:20:03
960
原创 算法中的“破坏与重建”:一文搞懂大规模邻域搜索 (LNS)
本文介绍了大规模邻域搜索(LNS)算法的基本原理与应用。LNS通过"破坏-修复"机制跳出局部最优陷阱,在广度探索和深度搜索间取得平衡。文章详细解析了破坏算子(随机/最差/关联破坏)和修复算子(贪心/遗憾修复)的特点与优劣,并与模拟退火、遗传算法等进行了对比。重点阐述了自适应大邻域搜索(ALNS)的核心思想,即根据搜索阶段动态调整算子组合,并提供了ALNS的伪代码框架。LNS通过大规模改变解结构,结合自适应学习机制,能有效解决组合优化问题,在求解质量和效率上具有显著优势。
2025-07-19 16:47:02
1268
原创 国内无痛平替!手把手教你用 Kimi K2 解锁「Claude Code」最强编程能力(附实测对比)
Claude 的编程能力公认顶尖,但国内使用堪称「地狱模式」—— 账号秒封、IP 黑名单、魔法不稳定… 折腾半天全白给?:月之暗面发布,完美兼容 Anthropic API!实测成本直降(Claude 价格的 1/30),国内网络直连无压力!
2025-07-18 22:13:16
1261
原创 一篇彻底搞懂大语言模型解码策略:温度、Top-K、Top-P和拒绝采样
本文探讨了大语言模型(LLM)生成文本时的解码策略。解码策略决定了如何从概率分布中选择词元,直接影响文本质量和多样性。随机性解码策略包括调整概率分布(如温度采样)和筛选候选集(如Top-K/Top-P采样)。温度参数控制创造力,高温增加多样性但可能产生不合理内容;Top-K和Top-P采样通过限制候选词数量或累积概率来避免低质量输出。拒绝采样则作为后处理步骤,执行特定规则(如避免重复)。文中建议组合使用这些策略(如Top-P+温度调整),并提供了不同策略的优缺点对比。
2025-07-15 23:42:27
570
原创 告别“变量爆炸”:用列生成算法优雅地解决大规模线性规划难题
摘要: 列生成(Column Generation)是一种应对变量爆炸问题的分治算法,将大规模线性规划分解为主问题和子问题迭代求解。主问题基于已知变量优化当前方案,提供约束的影子价格;子问题利用影子价格寻找能改善目标的新变量(判别数最小)。经典案例如切割问题:主问题最小化钢管使用量,子问题生成新切割模式。该方法高效处理海量变量场景,与分支定界结合可进一步求解整数规划(分支定价法)。核心思想是通过主从协作动态扩展变量空间,避免枚举所有可能。
2025-07-11 18:17:56
465
原创 硬核拆解GPT:从注意力机制到GELU,吃透每个技术细节
GPT模型基于Transformer解码器架构,通过堆叠多个解码器模块实现文本生成。其核心流程包括:输入处理(词嵌入+位置编码)、掩码多头自注意力(理解上下文但屏蔽未来信息)、网络优化(残差连接、层归一化、前馈神经网络)和最终输出(线性层+Softmax预测下一个词)。GPT采用自回归方式生成文本,每次预测都基于先前生成的词,直到完成整个输出。该架构通过GELU激活函数和Dropout等机制增强模型表现力和泛化能力,使其成为强大的语言生成工具。
2025-07-09 20:14:35
1030
原创 一篇入门:彻底搞懂模型解释神器 SHAP 的核心原理与实践
SHAP:解释机器学习模型预测的博弈论方法 SHAP(SHapley Additive exPlanations)是一种基于博弈论夏普利值的可解释AI工具,通过量化每个特征对预测结果的贡献度来解释机器学习模型的决策过程。它解决了黑盒模型的可解释性问题,如房价预测中分析面积、地段等因素的具体影响。SHAP的核心是将预测结果公平分配给各特征,计算其边际贡献平均值。可视化工具包括解释单次预测的力图和展示全局特征的摘要图。SHAP具有理论基础坚实、模型无关性强等优点,但也存在计算耗时、特征相关时解释困难等局限。实践
2025-07-09 16:20:27
1142
原创 给 RoBERTa 安个“大脑”:如何为你的模型选择合适的分类头(全连接层, TextCNN, ProtoNet)
当 RoBERTa 处理完输入文本并生成了其复杂的数字表示(称之为嵌入(embeddings))之后,分类头 (Classification Head) 就是最后一个组件。它接收这些数字表示,并做出最终的预测(比如,这段文本的情感是积极、消极还是中性)。选择不同的分类头会影响模型的性能、可解释性以及对特定数据类型的适用性。
2025-07-09 13:11:43
1025
原创 BERT 与 RoBERTa:从模型原理到训练策略优化
本文介绍了Transformer架构及其衍生模型BERT和RoBERTa。Transformer的核心是自注意力机制,BERT基于其编码器部分构建,擅长理解任务,采用静态遮蔽和完形填空训练策略。RoBERTa是对BERT的优化,取消了NSP任务,采用动态遮蔽,并扩大训练数据规模至160GB,性能显著提升。对比显示RoBERTa在训练方法和数据量上的改进使其成为更强大的模型,表明优化训练策略比架构创新更重要。
2025-07-08 23:28:37
1088
原创 写给小白的 Transformer 入门教程
Transformer 是一种革命性的深度学习架构,它通过创新的注意力机制(Attention Mechanism),从根本上改变了机器处理语言等序列数据的方式。其核心思想是,在处理句子时不再像传统模型(RNN)那样逐字阅读,而是一次性审视所有单词,并动态计算出每个词与其他所有词的关联强度,从而完美解决了长距离依赖的难题。这种机制通过查询(Q)、键(K)、值(V)三个向量的交互来实现。
2025-07-08 21:49:49
1159
原创 深入剖析SCIP:一个融合整数规划与约束规划的混合求解器
摘要:SCIP优化求解器融合整数线性规划(ILP)和约束规划(CP),通过多面体理论和割平面处理ILP问题,同时利用冲突分析和域传播进行CP求解。其核心采用分支定界框架,在节点处理中结合域传播、LP松弛求解和主启发式算法,通过CP的域传播提升ILP求解效率,而ILP的LP解又为CP提供推理依据。SCIP还整合冲突分析和割平面生成,实现两种方法的协同优化,特别适用于资源分配、调度等复杂问题。
2025-07-08 13:06:14
1129
原创 浙软机试2022-2024全复盘!火烧赤壁、彩灯背后是LeetCode原题?
浙软机试题型分析摘要: 2022-2024年浙软机试题型呈现从独立题目向题组演变的趋势。2022年为4道独立题,涉及表达式化简、几何计算、路径规划和分数拆分。2023年改为区间合并主题的4道渐进难题,核心算法与LCR 074相似,考察合并区间后的多种覆盖优化问题。2024年转为单调栈应用,第4题与LeetCode 221"最大正方形"高度相似,采用DP/单调栈解法。数据显示难度波动:2024年较简单(100+人AK),2023年较难(仅38人AK)。题型多改编自经典算法题,建议重点掌握区
2025-07-08 09:27:31
943
原创 从约束满足到冲突分析:约束规划原理剖析
约束规划的核心是约束满足问题(CSP),包含变量、定义域和约束三要素。领域传播通过连锁反应缩减变量定义域,常用弧相容技术确保值合理性。当传播无法解决时进入搜索阶段,采用冲突分析(CDCL)提升效率,通过建立蕴含图分析矛盾根源并学习新约束。全局约束(如alldifferent)相比二元约束具有更强的传播能力,能识别全局结构。典型应用如数独求解,通过行列宫约束和传播机制实现高效解题。
2025-07-07 22:18:03
675
原创 整数线性规划探秘:多面体、割平面与分支定界
整数线性规划(ILP)是寻求最佳整数解的优化方法,常用于背包问题等场景。其求解依赖于多面体理论(可行域顶点寻找最优解)、割平面法(逐步修剪可行域)和分支定界法(分治与剪枝策略)。多面体理论指出最优解在整数凸包的顶点,但精确描述困难;割平面通过添加约束逼近整数解;分支定界法通过系统分解问题并剪枝提高效率。这些方法共同解决ILP中整数约束带来的挑战,但各自存在计算复杂度等问题。
2025-07-07 17:04:26
686
原创 [论文导读] Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems
Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems 论文导读
2025-07-05 17:40:56
722
1
原创 编码注意力机制 [ Self - Attention, Attention, Causal Attention, Multi-head Attention ]
允许输入序列的每个位置在计算序列的表示时关注同一序列的所有位置。
2024-08-15 11:01:53
1469
1
原创 CCF-CSP 201903-3-损坏的RAID5 (Python) 满分实现
函数返回的字符串被当作一个 Python 表达式执行,其中包含了三个整数值,这三个整数值用逗号。是一个内置函数,它用于在遍历可迭代对象时,同时返回该对象的元素以及该元素在可迭代对象中的索引。函数用于将字符串当作 Python 代码执行,并返回执行结果。,这三个变量分别代表硬盘的数目、条带的大小和现存的硬盘数目。按位与(&)、按位或(|)、按位异或(^)、按位取反(~)、# n硬盘的数目,s条带的大小,l现存的硬盘数目。函数将这个表达式求值,并将其结果赋给三个变量。在 Python 中,
2024-08-15 01:58:10
362
原创 CCF-CSP 202203-1-未初始化警告 (Python,C++) 集合 满分实现
,用集合set来存储,时,退出(考虑常量0)2、可增加退出点,在。
2024-08-15 01:57:33
355
原创 CCF-CSP 202206-1-归一化处理 (Python,C++) Python5行代码 lambda函数 满分实现
⚠️:注意c++类型的设计(这里浪费了不少时间int n;// n为待处理数的个数//sum为待处理数的总和// 平均值是无效的,sum/n直接是int类型/int类型应该修改为int n;// n为待处理数的个数//sum为待处理数的总和// 平均值。
2024-08-15 01:56:04
338
原创 CCF-CSP 202206-2-寻宝大冒险 (Python) 三种思路 偏差列表,集合,元组 满分实现
思路一需要太多内存空间,为绿化图每个有树点(x0,y0),建立一个偏差列表,列表存(x0,y0)为原点,S为大小范围内有树点(xi,yi)-(x0,y0)的差值,即。,再以每棵树为原点构建。,通过python的。
2024-08-15 01:55:35
337
原创 CCF-CSP 202209-2-何以包邮? (Python,C++) 穷举 一维二维 动态规划 满分实现
第二题:正常思路是:最少得需要两个For循环,要说两个For循环也不难,难就难在两个for就超时,例如2020-12-2期末预测之最佳阈值,还有2021-04-2邻域均值,都用了前缀和来减少时间复杂度,这里可以学习一下。,n,其中第i个物品的重量为w[i],价值为v[i]。1、定义状态:设dp[i][j]表示将前i个物品放入容量为j的背包中所获得的最大价值。最终的结果为dp[n][C],即将前n个物品放入容量为C的背包中所获得的最大价值。⚠️有点巧妙,求最大的总价格,从而转换为简化的0-1背包。
2024-08-15 01:50:00
548
原创 CCF-CSP 201812-4-数据中心 (Python) 最小堆 优先队列 Prim最小生成树 满分实现
最小堆(堆中每个节点的值都小于等于其子节点的值。)是一种数据结构,它是一棵二叉树,其中每个节点的值都小于或等于其子节点的值。当我们向优先队列中添加元素时,我们可以将其插入到最小堆中,并在需要时执行堆化操作以保持堆的性质。:是一种常用的求解最小生成树的算法,它的基本思想是从一个初始节点开始,依次加入与当前生成树相邻的最短边,直到所有节点都被加入为止。,每次从堆中取出一条最小边并更新访问节点集合,直到所有节点都被访问或者堆为空为止。来维护候选边集,以便快速地找到当前生成树所连接的所有节点中,与其距离最短的边。
2024-08-15 01:49:06
379
原创 CCF-CSP 201803-3-URL映射 (Python) 正则表达式 满分实现
是Python中字符串的一个方法,用于将一个可迭代对象中的所有元素以指定的字符连接成一个字符串。将不完整的正则表达式模式包起来,就可以得到一个完整的正则表达式模式,用于进行匹配。用于将匹配的规则名称和匹配的值连接成一个字符串,其中每个值之间以空格分隔。用于将这个不完整的正则表达式模式转换成一个完整的正则表达式模式。返回得到一条URL匹配规则匹配该模式的列表,例如。从开头匹配,匹配成功返回res对象,失败则返回。与以p开头随后为任意三个字母数字的串匹配。表示匹配字符串的结尾,这样可以。表示匹配字符串的开头,
2024-08-15 01:48:31
268
原创 CCF-CSP 201509-3-模版生成系统 (Python) 正则 defaultdict 满分实现
访问defaultdict无key的情况,不会报错,返回None正好做空串改值。}}’` 100分。90分 按题意,变量名由大小写字母、数字和下划线。参数,则默认将所有匹配的分隔符都视为分割点。⚠️:只能匹配60分,最后发现了问题所在是。100分 中间无 },来匹配关。还是抽象的,按题意居然只能90分。,他把模版文本给伤了,去除后。参数是可选的,用于指定。删除字符串开头和结尾的。用以下三种正则匹配方式。
2024-08-15 01:47:58
397
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人