KNN算法的Python实现

299 篇文章 ¥59.90 ¥99.00
本文介绍了KNN算法的基本原理和Python实现。通过创建KNN类,实现了欧氏距离计算、训练数据集处理、预测等功能。示例代码展示了如何使用KNN对数据集进行分类,强调了KNN算法的性能优化技巧,如距离度量、K值调整和特征缩放等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

KNN算法的Python实现

KNN(K-Nearest Neighbors)算法是一种常用的分类和回归算法,它通过测量不同样本之间的距离来进行分类。在本文中,我们将详细介绍如何使用Python实现KNN算法,并提供相应的源代码。

KNN算法的原理很简单:对于给定的未标记样本,通过测量其与已标记样本之间的距离,找到与之最近的K个已标记样本。然后,根据这K个样本的标签进行投票,将未标记样本分类为得票最多的类别。在回归问题中,KNN算法使用K个最近邻样本的平均值来预测未知样本的输出。

下面是一个使用Python实现KNN算法的示例代码:

import numpy as np
from collections import Counter

class KNN:
    def 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值