同步正交匹配追踪算法(SOMP)在图像处理中的应用及Matlab实现
同步正交匹配追踪算法(SOMP)是一种用于图像处理的高效稀疏表达方法。它可以用于图像压缩、图像恢复和图像信号处理等领域。本文将介绍SOMP算法的原理及其在Matlab中的实现,并提供相应的源代码。
SOMP算法原理
SOMP算法是一种迭代的稀疏表达算法,用于恢复信号的稀疏表示。它利用正交匹配追踪的策略来逐步选取原子,构建稀疏表示。以下是SOMP算法的步骤:
- 初始化:设置迭代次数T,稀疏度K,输入信号y和字典矩阵D。
- 初始化残差:设置残差r为输入信号y。
- 初始化稀疏表示:设置稀疏表示x为零向量。
- 迭代过程:
a. 计算投影系数:计算投影系数向量g = D’ * r,其中D’表示字典矩阵D的转置。
b. 选择最大投影系数:选择g中绝对值最大的K个元素对应的索引集合Ω。
c. 最小二乘估计:通过最小二乘法估计残差的稀疏表示,即求解xΩ = argmin ||r - DΩ * xΩ||,其中DΩ表示从字典矩阵D中选取索引集合Ω对应的列组成的子矩阵。
d. 更新残差:计算更新后的残差r = y - D * xΩ。
e. 更新稀疏表示:将xΩ的非零元素复制到稀疏表示x的对应