使用简单的提示技术微调你的 AI 图像 Python
在本教程中,我们将探讨如何使用简单的提示技术来微调你的 AI 图像模型。我们将使用Python编程语言和深度学习框架来实现这一目标。以下是详细的步骤和相应的源代码。
步骤1:准备数据集
要微调你的AI图像模型,你需要准备一个数据集,该数据集包含两部分:原始图像和相应的标签。你可以使用任何可用的数据集,例如MNIST、CIFAR-10或ImageNet。确保你的数据集包含足够数量的图像和对应的标签。
步骤2:加载预训练模型
接下来,我们将加载一个预训练的图像模型作为基础模型。你可以选择使用流行的模型,如ResNet、VGG或Inception。在这个教程中,我们将使用ResNet作为基础模型。以下是加载预训练ResNet模型的代码:
import torchvision.models as models
# 加载预训练的ResNet模型
model = models.