二叉查找树

第一次写文章,哈。只是对自己的学习的一点点总结吧,希望对我以及大家都有帮助!!!

  对于二叉查找树的基本性质,每个节点的key(卫星域)有偏序关系<右孩子的key并且>左孩子的key。以前使用父链表示法写的,感觉很想堆,失去了二叉树的特色,所以用链表写了一个。二叉查找树有以下操作,查找最大元素,查找最小元素,遍历,查找后继,插入节点,删除节点,常见节点。
  其中值得我们注意的是删除节点这个操作,我们要保持二叉树的性质,如果有两个儿子要用后继节点信息代替这个节点信息, 并且删除这个后继,如果有一个儿子那么直接就可以将这个儿子的父亲域赋值为父亲的父亲域,如果没有儿子则直接删除这个点,而且对于所有树的操作一定要考虑遍历到根节点的情况;插入操作就是按照性质一次向下遍历即可。查找的时间复杂度和数的高度成正比的,所以这是不稳定的因素(相比之下红黑树和avl树就是稳定的)。下面是代码(有几个测试的数据):

 #include <stdio.h>
#include <malloc.h>
/*
        实现二叉树的插入以及删除操作,重点是删除操作,如果有两个儿子要用后继节点信息代替这个节点信息,
        并且删除这个后继,如果有一个儿子那么直接就可以将这个儿子的父亲域赋值为父亲的父亲域,
        如果没有儿子则直接删除这个点,而且对于所有树的操作一定要考虑遍历到根节点的情况
                                                                                      2007-10-03
*/
struct node
{
       long key;
       struct node *p;
       struct node *left;
       struct node *right;      
};
struct node *head;

void INORDER_TREE_WALK(struct node* x)            //中根遍历
{
     //printf("%ld ",x->key);                     //前根遍历
     if(x->left!=NULL) INORDER_TREE_WALK(x->left);
     printf("%ld ",x->key);
     if(x->right!=NULL) INORDER_TREE_WALK(x->right);     
}

struct node *TREE_SEARCH(struct node* x,long k)    //查找关键字节点
{
       if(x==NULL||x->key==k) return x;
       else if(k<x->key) return TREE_SEARCH(x->left,k);
       else  return TREE_SEARCH(x->right,k);      
}

struct node *TREE_MINIMUM(struct node* x)           //查找最小节点
{
     while(x->left!=NULL)
     x=x->left;
     return x;    
}

struct node *TREE_MAXIMUM(struct node* x)           //查找最大节点
{
     while(x->right!=NULL)
     x=x->right;
     return x;    
}

struct node *TREE_SUCCESSOR(struct node* x)          //查找后继
{
     if(x->right!=NULL) return TREE_MINIMUM(x->right);
     struct node* y=x->p;
     while(y!=NULL&&x==y->right)
     {
           x=y;
           y=y->p;                                                
     }  
     //printf("%ld/n",y->key);
     return y;    
}

struct node *TREE_INSERT(struct node* head,struct node* z)         //插入节点
{
     struct node *x,*y;
     y=NULL;
     x=head;
     while(x!=NULL)
     {
           y=x;
           if(z->key<x->key) x=x->left;
           else x=x->right;                 
     }
     z->p=y;
     if(y==NULL) head=z;
     else if(z->key<y->key) y->left=z;
     else y->right=z;  
     return head;
}

struct node *TREE_DELETE(struct node* head,struct node* z)      //删除节点
{
       struct node *x,*y;
       if(z->left==NULL||z->right==NULL) y=z;        
       else y=TREE_SUCCESSOR(z);
       if(y->left!=NULL) x=y->left;
       else x=y->right;
       if(x!=NULL) x->p=y->p;
       if(y->p==NULL) head=x;
       else if(y==y->p->left) y->p->left=x;
       else y->p->right=x;
       if(y!=z) z->key=y->key;
       return head;      
}
struct node *NODE_CREAT(long key)             //创建节点
{
      struct node *tmp;
      tmp=(struct node*)malloc(sizeof(struct node));
      tmp->left=NULL;
      tmp->right=NULL;
      tmp->p=NULL;
      tmp->key=key;
      return tmp;
}

int main()
{
    long n,t,a[10]={4,1,3,2,16,9,10,14,8,7};
    struct node *ty;
    head=NULL;
    ty=NULL;
    for(int i=0;i<10;i++)
    head=TREE_INSERT(head,NODE_CREAT(a[i]));
    INORDER_TREE_WALK(head);
    printf("/n");
    while(scanf("%ld",&n)==1&&n)
    { 
          ty=TREE_SEARCH(head,n);
          //printf("%ld/n",ty->key);
          head=TREE_DELETE(head,ty);
          INORDER_TREE_WALK(head);
          printf("/n");                
    } 
    return 0; 
}

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭