一、题目
题目描述
有
n
n
n个人,
m
m
m个关系,每个关系中包含
u
,
v
,
a
,
b
,
c
u,v,a,b,c
u,v,a,b,c,表示
u
,
v
u,v
u,v两个人,如果都选
0
0
0有
a
a
a的贡献,如果都选
1
1
1有
c
c
c的贡献,否则有
b
b
b的贡献,求最大的贡献。
数据范围
n
≤
500
,
m
≤
1
0
4
,
1
≤
u
,
v
≤
n
,
u
≠
v
,
1
≤
a
,
c
≤
4
×
1
0
6
,
b
=
a
/
4
+
c
/
3
n≤500,m≤10^4,1≤u,v≤n,u≠v,1≤a,c≤4×10^6,b=a/4+c/3
n≤500,m≤104,1≤u,v≤n,u=v,1≤a,c≤4×106,b=a/4+c/3
本题有多组输入数据
二、解法
这道题很暴力,考虑总量-最小割,直接建一个图,然后解方程算出每条边的贡献,图长这样:
{
a
+
b
=
A
+
B
c
+
d
=
B
+
C
a
+
e
+
d
=
b
+
e
+
c
=
A
+
C
\begin{cases} a+b=A+B\\ c+d=B+C\\ a+e+d=b+e+c=A+C \end{cases}
⎩⎪⎨⎪⎧a+b=A+Bc+d=B+Ca+e+d=b+e+c=A+C
上面的方程肯定是解不出来的,但是我们求出一个特殊解就行了:
{ a = b = ( A + B ) / 2 c = d = ( B + C ) / 2 e = ( A + C ) / 2 − B \begin{cases} a=b=(A+B)/2\\ c=d=(B+C)/2\\ e=(A+C)/2-B \end{cases} ⎩⎪⎨⎪⎧a=b=(A+B)/2c=d=(B+C)/2e=(A+C)/2−B
然后把图建出来之后跑最小割,用 s u m − f l o w sum-flow sum−flow就是答案,可能会有边权不是整数,所以我们把所有边权 × 2 \times 2 ×2,然后算答案是把 f l o w / 2 flow/2 flow/2即可,本题要看 long long \text{long long} long long。
#include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
#define int long long
#define inf (1ll<<60)
const int MAXN = 1005;
using namespace std;
int read()
{
int num=0,flag=1;char c;
while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;
while(c>='0'&&c<='9')num=(num<<3)+(num<<1)+(c^48),c=getchar();
return num*flag;
}
int n,m,S,T,tot,sum,ans,f[MAXN],cur[MAXN],dis[MAXN];
queue<int> q;
struct edge
{
int v,c,next;
}e[MAXN*MAXN];
void add_edge(int u,int v,int c)
{
e[++tot]=edge{v,c,f[u]},f[u]=tot;
e[++tot]=edge{u,0,f[v]},f[v]=tot;
}
int bfs()
{
memset(dis,0,sizeof dis);
dis[S]=1;
q.push(S);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=f[u];i;i=e[i].next)
{
int v=e[i].v;
if(e[i].c>0 && !dis[v])
{
dis[v]=dis[u]+1;
q.push(v);
}
}
}
if(!dis[T]) return 0;
return 1;
}
int dfs(int u,int ept)
{
if(u==T) return ept;
int flow=0,tmp=0;
for(int &i=cur[u];i;i=e[i].next)
{
int v=e[i].v;
if(dis[u]+1==dis[v] && e[i].c>0)
{
tmp=dfs(v,min(e[i].c,ept));
if(!tmp) continue;
ept-=tmp;
e[i].c-=tmp;
e[i^1].c+=tmp;
flow+=tmp;
if(!ept) break;
}
}
return flow;
}
signed main()
{
while(~scanf("%lld %lld",&n,&m))
{
S=0;T=n+1;tot=1;sum=ans=0;
for(int i=0;i<=T;i++)
f[i]=0;
for(int i=1;i<=m;i++)
{
int u=read(),v=read(),a=read(),b=read(),c=read();
sum+=a+b+c;
add_edge(S,u,(a+b));
add_edge(S,v,(a+b));
add_edge(u,v,(a+c)-b*2);
add_edge(v,u,(a+c)-b*2);
add_edge(u,T,(b+c));
add_edge(v,T,(b+c));
}
while(bfs())
{
for(int i=0;i<=T;i++)
cur[i]=f[i];
ans+=dfs(S,inf);
}
printf("%lld\n",sum-ans/2);
}
}